

KIT - Kalaignarkarunanidhi Institute of Technology

An Autonomous Institution

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai Accredited by NAAC with 'A' GRADE & NBA (AERO, CSE, ECE, EEE, MECH & MBA) An ISO 9001 : 2015 Certified Institution, Coimbatore - 641 402.

Regulations, Curriculum & Syllabus - 2023

(For Students admitted from the Academic Year 2023-24 and onwards)

MASTER OF ENGINEERING DEGREE

IN

APPLIED ELECTRONICS

Department of Electronics and Communication Engineering PG-Applied Electronics

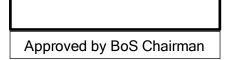
Conceptual Framework	
(For Students admitted from	
the Academic Year 2023-24 onwards)	

Semester	Level of Course	Hours / Week	No of Courses	Range of Credits / Courses	Total Credits						
	PAR	ΤI									
A – Foundation Courses											
I	Foundation Courses (FC)	4	1	4	4						
B – Professi	onal Core Courses										
I to III	Professional Core(PC)	3	11	2-3	31						
C – Elective	Courses										
I to III	Professional Elective(PE)	3	5	3	15						
D – Project V	Nork										
III & IV	Project Work (PW)	12-24	2	6-12	18						
	PART II- Career Enhancem	nent Cours	es (CEC)								
II	Article Writing and Seminar	2	1	1	1						
	Total Credit				69						

30 1 Approved by BoS Chairman

Curriculum and Scheme of Assessment (For Students admitted from the Academic Year 2023-24 and onwards)

	Seme	ester I									
Course Code	Course Name	СТ	Ins	truct	iona	al Ho	urs	As	Assessment		
Course coue		•	СР	L	Т	Ρ	С	CIA	ESE	Total	
Theory / Theory	Theory / Theory with Practical										
M23MAT101	Applied Mathematics for Electronics Engineers	FC	4	3	0	0	4	40	60	100	
M23AET101	Advanced Digital Signal Processing	PC	3	3	0	0	3	40	60	100	
M23AET102	Sensors, Actuators and Interface Electronics	PC	3	3	0	0	3	40	60	100	
M23AET103	Advanced Digital System Design	PC	3	3	0	0	3	40	60	100	
M23CST101	Research methodology and IPR	PC	3	3	0	0	3	40	60	100	
	Professional Elective - I	PE	3	3	0	0	3	40	60	100	
Practical										·	
M23AEP101	Electronics System Design Laboratory - I	PC	4	0	0	4	2	60	40	100	
	Total credits to be earned										


	Semester II											
Course Code	Course Name	СТ	Ir	Instructional Hours				Assessment				
			СР	L	Т	Ρ	С	CIA	ESE	Total		
Theory / Theory with Practical												
M23AET201	Soft Computing and Optimization Techniques	PC	3	3	0	0	3	40	60	100		
M23AET202	Embedded System Design	PC	3	3	0	0	3	40	60	100		
M23AET203	Hardware-Software Co-Design	PC	3	3	0	0	3	40	60	100		
M23AET204	Power Electronics and Applications	PC	3	3	0	0	3	40	60	100		
	Professional Elective - II	PE	3	3	0	0	3	40	60	100		
	Professional Elective - III	PE	3	3	0	0	3	40	60	100		
Practical												
M23AEP201	Electronics System Design Laboratory - II	PC	4	0	0	4	2	60	40	100		
M23CEP203	Article Writing and Seminar	CEC	2	0	0	2	1	100	-	100		
	Total credits to be earned						21					

Approved by BoS Chairman

	Sem	ester III								
Course Code	Course Name	СТ	Instructional Ho				ırs	Assessment		
			СР	L	Т	Ρ	С	CIA	ESE	Total
Theory / Theory with Practical										
M23AET301	Advanced Microprocessors and Microcontrollers Architecture	PC	3	3	0	0	3	40	60	100
	Professional Elective - IV	PE	3	3	0	0	3	40	60	100
	Professional Elective - V	PE	3	3	0	0	3	40	60	100
Practical										
M23AEP301	Project Work (Phase I)	PW	12	0	0	12	6	40	60	100
	Total credits to be earned									

	Semester IV										
Course Code	Course Name	СТ	Instr	ucti	ona	l Ho	urs	Assessment			
			CP	L	Τ	Ρ	С	CIA	ESE	Total	
Practical											
M23AEP401	Project Work (Phase II)	PW	24	0	0	24	12	40	60	100	
	Total credits to be earned						12				

Ma

	FOUNDATION COURSES(FC)										
Course	СТ	Ins	truct	iona	al Ho	urs	Α	ssessr	nent		
Code	Course Name		СР	L	Т	Ρ	С	CIA	ESE	Total	
Theory / Theo	Theory / Theory with Practical										
M23MAT101	Applied Mathematics for Electronics Engineers	FC	4	3	1	0	4	40	60	100	
	Total credits to be earned										

PROFESSIONAL CORE(PC)										
Course	Course Name	СТ	Ins	truct	iona	al Ho	urs	A	ssessr	nent
Code		•	СР	L	Т	Ρ	С	CIA	ESE	Total
Theory / Theo	Theory / Theory with Practical									
M23AET101	Advanced Digital Signal Processing	PC	3	3	0	0	3	40	60	100
M23AET102	Sensors, Actuators and Interface Electronics	PC	3	3	0	0	3	40	60	100
M23AET103	Advanced Digital System Design	PC	3	3	0	0	3	40	60	100
M23CST101	Research methodology and IPR	PC	3	3	0	0	3	40	60	100
M23AEP101	Electronics System Design Laboratory-I	PC	4	0	0	0	2	60	40	100
M23AET201	Soft Computing and Optimization Techniques	PC	M I3 A1	3 .E	0	0	3	40	60	100
M23AET202	Embedded System Design	PC	3	3	0	0	3	40	60	100
M23AET203	Hardware-Software Co-Design	PC	3	3	0	0	3	40	60	100
M23AET204	Power Electronics and Applications	PC	3	3	0	0	3	40	60	100
M23AEP201	Electronics System Design Laboratory-II	PC	4	0	0	0	2	60	40	100
M23AET301	Advanced Microprocessors and Microcontrollers Architecture	PC	3	3	0	0	3	40	60	100
	Total credits to be earned 31									

Approved by BoS Chairman	

PROFESSIONAL ELECTIVES(PE)										
Semester-I										
Elective – I										
Course	Course Course Name CT Instructional Hours Assessment									nent
Code		01	СР	L	Т	Р	С	CIA	ESE	Total
Theory / Theo	Theory / Theory with Practical									
M23VDT101	CMOS Digital VLSI Design	PE	3	3	0	0	3	40	60	100
M23AEE101	Computer Architecture and Parallel Processing	PE	3	3	0	0	3	40	60	100
M23AEE102	Electromagnetic Interference and Compatibility	PE	3	3	0	0	3	40	60	100
M23AEE103	Neural Networks and Applications	PE	3	3	0	0	3	40	60	100

	PROFESSIONAL ELECTIVES(PE)									
	Semester – II									
Elective – II										
Course	Course Course Name CT Instructional Hours Assessment									
Code CP L T P C CIA ESE Total										
Theory / Theo	Theory / Theory with Practical									
M23VDT103	CAD for VLSI Circuits	PE	3	3	0	0	3	40	60	100
M23VDE203	Nano Electronics	PE	3	3	0	0	3	40	60	100
M23AEE201	High Performance Networks	PE	3	3	0	0	3	40	60	100
M23AEE202	M23AEE202Wireless Adhoc and Sensor NetworksPE330034060100									

	PROFESSIONAL ELECTIVES(PE)										
	Semester – II										
Elective – III											
Course	Course Name		СТ	Ins	truct	iona	al Ho	urs	A	ssessr	nent
Code			•	СР	L	Т	Р	С	CIA	ESE	Total
Theory / Theo	Theory / Theory with Practical										
M23AEE203	RF System Design		PE	3	3	0	0	3	40	60	100
M23AEE204	Speech and Audio Signal Processing		PE	3	3	0	0	3	40	60	100
M23VDT201	Device Modeling		PE	3	3	0	0	3	40	60	100
M23AEE205	M23AEE205 Robotics PE 3 3 0 0 3 40 60 100										

Approved by BoS Chairman

	PROFESSIONAL ELECTIVES(PE)									
	Semeste	r— III								
	Elective	– IV								
Course	Course Name	СТ	Ins	truct	iona	al Ho	urs	A	ssessr	nent
Code			СР	L	Т	Ρ	С	CIA	ESE	Total
Theory / Theo	ry with Practical			1	E					
M23AEE301	DSP Processor Architecture and Programming	PE	3	3	0	0	3	40	60	100
M23AEE302	Wavelets and Multi resolution Processing	PE	3	3	0	0	3	40	60	100
M23VDE204	System on Chip Design	PE	3	3	0	0	3	40	60	100
M23VDE305	MEMS and NEMS	PE	3	3	0	0	3	40	60	100

	PROFESSIONAL ELECTIVES(PE)									
	Semeste	r—III								
	Elective	-V								
Course	Course Name	СТ	Ins	truct	iona	al Ho	urs	A	ssessr	nent
Code			СР	L	Т	Ρ	С	CIA	ESE	Total
Theory / Theor	y with Practical				F,	\mathcal{A}				
M23VDE306	Machine Learning and Algorithm design	PE	3	3	0	0	3	40	60	100
M23AEE303	Advanced Digital Image Processing	PE	3	3	0	0	3	40	60	100
M23AEE304	Pattern Recognition	PE	3	3	0	0	3	40	60	100
M23AEE305	Secure Computing Systems	PE	κΕ 3	3	0	0	3	40	60	100
							1			

PROJECT WORK(PW)										
Course	Course Course Name		Ins	truct	iona	al Ho	urs	Α	ssess	ment
Code		СТ	CP	L	Т	P	С	CIA	ESE	Total
Theory / Theor	y with Practical				/					
M23AEP301	Project Work (Phase I)	PW	12	0	0	12	6	40	60	100
M23AEP401	Project Work (Phase II)	PW	24	0	0	24	12	40	60	100

	CAREER ENHANCEMENT COURSE(CEC)									
Course	Course Name	СТ	Ins	truct	iona	al Hou	rs	A	ssess	ment
Code	oourse Name		СР	L	Т	Ρ	С	CIA	ESE	Total
Theory / Theor	Theory / Theory with Practical									
M23CEP203	Article Writing and Seminar	CEC	2	0	0	2	1	40	60	100

Spring

M.E. AE	M23MAT101 APPLIED MATHEMATICS FOR	L	т	Р	С	
	ELECTRONICS ENGINEERS	3	1	0	4	

	Course Objectives
1.	To demonstrate various analytical skills in applied mathematics and extensive experience with
	the tactics of problem solving and logical thinking applicable in electronics engineering.
2.	To extend matrix theory in the field of communication engineering.
3.	To understand the basic concepts of probability and random variables to introduce some
	standard distributions applicable to engineering which can describe real life phenomenon.
4.	To understand the concept of dynamic programming and apply in communication
	networks.
5.	To understand the basic concepts of Queueing Models and to apply in real life engineering
	problems.

UNIT – I FUZZY LOGIC	12
assical logic – Multi valued logics - Fuzzy propositions – Fuzzy quantifiers.	

12

Clas . KD

UNIT – II MATRIX THEORY Cholesky decomposition - Generalized Eigenvectors - Canonical basis - QR factorization - Least

squares method - Singular value decomposition.

UNIT – III PROBABILITY AND RANDOM VARIABLES	12
Probability - Axioms of probability - Conditional probability - Bayes' theorem - Random varial	oles -
Probability function - Moments - Moment generating functions and their properties - Binomial, Po	isson,
Geometric, Uniform, Exponential and Normal distributions (MGF Derivation for each distribution)	

UNIT – IV D	YNAMIC PROGRAMMING	12
Dynamic programming - Principle of c	pptimality - Forward and backward recursion -Applica	tions of
dynamic programming: Shortest dista	ance Problem in communication networks - Probl	ems of
dimensionality.		

Ma

Approved by BoS Chairman

R2023------KIT- Kalaignarkarunanidhi Institute of Technology

UNIT – V QUEUEING MODELS	12
Poisson Process - Markovian queues - Single and multi server models: M/M/1, M/M/C mod	lels with
infinite and finite capacity - Little's formula - M/G/1 queue - Pollaczek Khinchine formula - problems.	Simple

Total Instructional hours : 60

	Course Outcomes : Students will be able to
CO1	Develop Fuzzy rules, fuzzy logic, fuzzy propositions and fuzzy quantifiers relationships and its
	application in fuzzy sets.
CO2	Make use of various methods in matrix theory to solve system of linear equations.
CO3	Identify moments, standard distributions of discrete and continuous random variables.
CO4	Apply the principle of optimality and sub-optimization, formulation and computational procedure
	of dynamic programming.
CO5	Demonstrate the queueing models and expose the basic characteristic features of a
	queueing system.

Reference Books						
Bronson, R., "Matrix Operations", Schaum's Outline Series, McGraw Hill, 2 nd Edition, 2011.						
George, J. Klir. and Yuan, B., "Fuzzy sets and Fuzzy logic, Theory and Applications",						
Pearson Education, India, 1 st Edition, 2015.						
3. Gross, D., Shortle J. F., Thompson, J.M., and Harris, C. M., "Fundamentals of Queueing						
Theory", John Wiley, 4 th Edition 2014.						
Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for						
Engineers", Pearson Education, Asia, 8 th Edition, 2015.						
5. Taha, H.A., "Operations Research: An Introduction", Pearson education, Asia, New Delhi,						
9 th Edition, 2016.						

BUILL

Approved by BoS Chairman

	M23AET101- ADVANCED DIGITAL SIGNAL	L	Т	Р	С
M.E.	PROCESSING	3	0	0	3

	Course Objectives					
1.	1. To comprehend mathematical description and modeling of discrete time random signals.					
2.	To conversant with important theorems and algorithms.					
3.	To learn relevant figures of merit such as power, energy, bias and consistency					
4.	To learn about Adaptive filters					
5.	To familiar with estimation, equalization and filtering concepts.					

UNIT-I		DISC	RETE RANDOM	SIGNAL	PROCESSI	NG		9
Wide sense s	stationar	y process – E	rgodic process -	- Mean -	- Variance	- Auto-correla	ation ar	nd Auto-
correlation ma	atrix - Pr	roperties - We	iner Khitchine rel	ation - P	ower specti	al density –	filtering	random
process, Sp	oectral	Factorization	Theorem-Finite	Data	records,	Simulation	of u	uniformly
distributed/Ga	aussian (distributed whi	te noise – Simu	lation of	Sine wave	mixed with	Additiv	e White
Gaussian Nois	se	4				4		

UNIT-II SPECTRUM ESTIMATION		9
estimator - F	nsistency of estimators - Non-Parametric methods - Correlation method - Co- Performance analysis of estimators – Unbiased consistent estimators - Perio arlett spectrum estimation - Welch estimation	

Model based approach - AR, MA, ARMA Signal modeling - Parameter estimation using Yule-Walker method - Maximum likelihood criterion - Efficiency of estimator - Least mean squared error criterion – Wiener filter - Discrete Wiener Hoff equations – Mean square error.

LINEAR ESTIMATION AND PREDICTION

9

UNIT-III

10

UNIT	-IV ADAPTIVE FILTERS	9							
Recursi	ا ive estimators - Kalman filter - Linear prediction – Forward prediction and Backward pred	diction,							
Predicti	Prediction error - Whitening filter, Inverse filter - Levinson recursion, Lattice realization, Levinson								
recursio	ecursion algorithm for solving Toeplitz system of equation								
UNIT	-V MULTIRATE DIGITAL SIGNAL PROCESSING 9								
FIR Ad	aptive filters - Newton's steepest descent method - Adaptive filters based on steepest d	escent							
method	I - Widrow Hoff LMS Adaptive algorithm - Adaptive channel equalization - Adaptive	echo							
cancelle	er - Adaptive noise cancellation - RLS Adaptive filters - Exponentially weighted RLS -	Sliding							
window	RLS - Simplified IIR LMS Adaptive filter								
	Total Instructional ho	urs:45							
	Course Outcomes :Students will be able to								
CO1	Outline various properties of random process								
CO2	Explain various spectrum estimation methods								
CO3	CO3 Explain various linear estimation and prediction methods								
CO4	O4 Design various prediction systems for adaptive filters								
CO5	Design models for adaptive equalization and filtering.								

	Reference Books					
1.	 John G.Proakis, Dimitris G.Manolakis, "Digital Signal Processing", Prentice Hall of India, NewDelhi, 2005. 					
2.	 Monson H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley andSonsInc., NewYork, 2006. 					
3.	P.P.Vaidyanathan, "Multirate Systems and Filter Banks", Prentice Hall, 1992.					
4.	S.Kay, "Modern spectrum Estimation theory and application",Prentice Hall, Englehood Cliffs,NJ1988.					
5.	SimonHaykin, "Adaptive Filter Theory", Prentice Hall, Englehood Cliffs,NJ1986.					
6.	Sophoncles J. Orfanidis, "Optimum Signal Processing", McGraw-Hill, 2000.					

un 5

Approved by BoS Chairman

R2023-----interventional R2023------ KIT- Kalaignarkarunanidhi Institute of Technology

ME	M23AET102- SENSORS, ACTUATORS AND	L	Т	Ρ	С	
M.E.	INTERFACE ELECTRONICS	3	0	0	3	

	Course Objectives					
1.	To understand static and dynamic characteristics of measurement systems.					
2.	To study various types of sensors.					
3.	To study various types of Amplifiers.					
4.	To study different types of actuators					
5.	To study State-of-the-art digital and semiconductor sensors					

UNIT-I

INTRODUCTION TO MEASUREMENT SYSTEMS

9

9

Introduction to measurement systems: general concepts and terminology, measurement systems, sensor classification, general input-output configuration, methods of correction, performance characteristics: static characteristics of measurement systems, accuracy, precision, sensitivity, other characteristics: linearity, resolution, systematic errors, random errors, dynamic characteristics of measurement systems: zero-order, first-order, and second-order measurement systems and response.

UNIT-II

RESISTIVE AND REACTIVE SENSORS

Resistive sensors: potentiometers, strain gages, resistive temperature detectors, magneto resistors, light-dependent resistors, Signal conditioning for resistive sensors: Wheatstone bridge, sensor bridge calibration and compensation, Instrumentation amplifiers, sources of interference and interference reduction, Reactance variation and electromagnetic sensors, capacitive sensors, differential, inductive sensors, linear variable differential transformers (LVDT), magneto elastic sensors, hall effect sensors, Signal conditioning for reactance- based sensors & application to the LVDT.

Approved by BoS Chairman

R2023------dhi Institute of Technology

UNI	Г-III	SELF-GENERATINGSENSORS	9						
Self-g	enerati	ing sensors: thermoelectric sensors, piezoelectric sensors, pyroelectric se	ensors,						
photo	voltaic	sensors, electrochemical sensors, Signal conditioning for self- generating s	ensors:						
chopp	chopper and low-drift amplifiers, offset and drifts amplifiers, electrometer amplifiers, charge amplifiers,								
noise	oise in amplifiers.								
UNIT	-IV	IV ACTUATORS DRIVE CHARACTERISTICS AND 9 APPLICATIONS							
Relay	s, Sole	noid drive, Stepper Motors, Voice-Coil actuators, Servo Motors, DC motors and	motor						
contro	ol, 4-to	o-20 mA Drive, Hydraulic actuators, variable transformers: synchro's, reso	lvers,						
Induc	tosyn, ı	resolver-to-digital and digital-to-resolver converters.							
UNIT	-V	DIGITAL SENSOR AND SEMICONDUCTOR DEVICE SENSORS	9						
Digita	l sensc	ors: position encoders, variable frequency sensors – quartz digital thermometer, v	ibrating						
wire s	strain g	ages, vibrating cylinder sensors, saw sensors, digital flow meters, Sensors ba	sed on						
semic	onduct	or junctions: thermometers based on semiconductor junctions, magneto diode	es and						
magn	eto trar	nsistors, photodiodes and phototransistors, sensors based on MOSFET transistor	s, CCD						
imagiı	ng sens	sors, ultrasonic sensors, fiber- optic sensors.							
		Total Instructional ho	urs: 45						
		Course Outcomes: Students will be able to							
CO1	Outli	ne the concepts of measurement systems							
CO2	Expla	ain the resistive and reactive sensors							
CO3	Expla	ain the self-generating sensors							
CO4	Anal	yze the characteristics of actuators							
CO5	Exan	nine about digital and semiconductor sensors							
		Reference Books							
1.	Andrze	j M.Pawlak, "Sensors and Actuators in Mechatronics Design and							
	Applications",2006.								
2.	D.Johnson, "Process Control Instrumentation Technology", John Wiley and Sons.								
3.	D.Patra	anabis, "Sensors and Transducers", TMH 2003.							

aprilla

Approved by BoS Chairman

4.	E.O.Doeblin, "Measurement System: Applications and Design", McGraw Hill
	publications.
5.	Graham Brooker, "Introduction to Sensors for ranging and imaging", Yesdee, 2009.
6.	HermanK.P.Neubrat, "Instrument Transducers–An Introduction toTheir Performance and Design", Oxford University Press.
7.	IanSinclair, "Sensors and Transducers", Elsevier, 3 rd Edition, 2011.
8.	JonWilson,"Sensor Technology Handbook", Newone 2004.
9.	KevinJames, "PC Interfacing and Data acquisition", Elsevier, 2011.
10	Ramon Pallás Areny, John G. Webster, "Sensors and Signal conditioning",2 nd Edition, John Wiley and Sons,2000
11.	Clarence W.deSilva, "Sensors and Actuators: Control System Instrumentation", CRC Press, 2007

aprilla

Approved by BoS Chairman

R2023-----anitation KIT- Kalaignarkarunanidhi Institute of Technology

	M23AET103- ADVANCED DIGITAL SYSTEM DESIGN	L	т	Ρ	С
M.E.		3	0	0	3

	Course Objectives							
1.								
	To introduce methods to analyze and design synchronous sequential circuits.							
2.	2. To introduce methods to analyze and design asynchronous sequential circuits.							
3.	To introduce fault diagnosis and testing algorithms.							
4.	To introduce the architectures of programmable devices							
5.	To introduce design and implementation of digital circuits using programming tools							

UNIT - I SEQUENTIAL CIRCUIT DESIGN 9

Analysis of clocked synchronous sequential circuits and modeling- State diagram, state table, state table assignment and reduction-Design of synchronous sequential circuits design of iterative circuits-ASM chart and realization using ASM.

UNIT-II

ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

Analysis of asynchronous sequential circuit – flow table reduction-races-state assignmenttransition table and problems in transition table- design of asynchronous sequential circuit-Static, dynamic and essential hazards – data synchronizers – mixed operating mode asynchronous circuits – designing vending machine controller.

UNIT - III

FAULT DIAGNOSIS AND TESTABILITY ALGORITHMS

9

9

Fault table method-path sensitization method – Boolean difference method-D algorithm -Tolerance techniques – The compact algorithm – Fault in PLA – Test generation-DFT schemes – Built in self-test.

Approved by BoS Chairman

R2023------KIT- Kalaignarkarunanidhi Institute of Technology

_	T - IV	SYNCHRONOUS DESIGN USING PROGRAMMABLE DEVICES	9					
Progra	Programming logic device families – Designing a synchronous sequential circuit using PLA/PA							
– Real	– Realization of finite state machine using PLD – FPGA – Xilinx FPGA-Xilinx 4000.							
UN	UNIT - V SYSTEM DESIGN USING VERILOG 9							
Hardw	vare M	odelling with Verilog HDL – Logic System, Data Types and Operato	ors For					
Model	ling in	Verilog HDL - Behavioural Descriptions in Verilog HDL – HDL Based Syn	thesis-					
Synthe	esis of	Finite State Machines- structural modeling - compilation and simulation of	Verilog					
code	–Test	bench - Realization of combinational and sequential circuits using Ve	erilog –					
Regist	ers –	counters – sequential machine – serial adder – Multiplier- Divider – De	sign of					
simple	microp	processor.						
		Total Instructional ho	urs:45					
		Course Outcomes : Students will be able to						
CO1	Analyz	e and design synchronous sequential digital circuits						
CO2	Analyze and design asynchronous sequential digital circuits							
CO3	O3 Design fault diagnosis system for testing various faults							
CO4	CO4 Identify the programmable devices for system design							
CO5	CO5 Design and implement digital circuits of industry standards by using programming tools							
		Reference Books						
1.	Charle	s H. Roth Jr, "Fundamentals of Logic Design", Thomson Learning,2004						
2.	 ^{2.} M.D.Ciletti, "Modeling, Synthesis and Rapid Prototyping with the Verilog HDL", Prentice Hall,1999 							
3.	3. M.G. Arnold, "Verilog Digital – Computer Design", Prentice Hall (PTR), 1999.							
4.	4. NripendraNBiswas, "Logic Design Theory", Prentice Hall of India, 2001.							
5.	5. Parag K. Lala, "Fault Tolerant and Fault Testable Hardware Design", BS Publications, 2002.							
6.								
7.								

Approved of spirman

		L	т	Р	С
M.E.	M23CST101 - RESEARCH METHODOLOGY AND IPR (Common to VLSI & AE)	3	0	0	3

y, ethics	1.

UNIT-I		RESEARCH DESIGN				ę	•						
Overview o	of research	process	and	design,	Use	of	Secondary	and	exploratory	data	to	answer	the

research question, Qualitative research, Observation studies, Experiments and Surveys

|--|

Measurements, Measurement Scales, Questionnaires and Instruments, Sampling and methods. Data -Preparing, Exploring, examining and displaying.

UNIT-III DATA ANALYSIS AND REPORTING

Overview of Multivariate analysis, Hypotheses testing and Measures of Association. Presenting Insights and findings using written reports and oral presentation.

UNIT-IV

INTELLECTUAL PROPERTY RIGHTS

9

Intellectual Property – The concept of IPR, Evolution and development of concept of IPR, IPR development process, Trade secrets, utility Models, IPR & Bio diversity, Role of WIPO and WTO in IPR establishments, Right of Property, Common rules of IPR practices, Types and Features of IPR Agreement, Trademark, Functions of UNESCO in IPR maintenance.

R2023------KIT- Kalaignarkarunanidhi Institute of Technology

UNIT-VPATENTS9Patents – objectives and benefits of patent, Concept, features of patent, Inventive step, Specification,
Types of patent application, process E-filling, Examination of patent, Grant of patent, Revocation,
Equitable Assignments, Licences, Licensing of related patents, patent agents, Registration of patent
agents

Total Instructional hours:45

	Course Outcomes: Students will be able to							
CO1	Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.							
CO2	Understand research problem formulation & Analyze research related information and Follow research ethics.							
CO3	Correlate the results of any research article with other published results. Write a review article in the field of engineering.							
CO4	Appreciate the importance of IPR and protect their intellectual property. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.							
Text Books								

	Text Books						
1.	Cooper Donald R, Schindler Pamela S and Sharma JK, "Business Research Methods", Tata						
McGraw Hill Education, 11e (2012).							
2.	Catherine J. Holland, "Intellectual property: Patents, Trademarks, Copyrights, Trade						
	Secrets", Entrepreneur Press, 2007.						

	Reference Books							
1. David Hunt, Long Nguyen, Matthew Rodgers, "Patent searching: tools & techniques", Wile 2007.								
2.	The Institute of Company Secretaries of India, Statutory body under an Act of parliament,							
	"Professional Programme Intellectual Property Rights, Law and practice", September 2013.							

PROFESSIONAL ELECTIVE-I

10 apr m

Approved by BoS Chairman

M.E.	M23VDT101-CMOS DIGITAL VLSI DESIGN (Common to VLSI & AE)	L	т	Р	С
IVI. C.		3	0	0	3

	Course Objectives	
1.	To introduce the principle of operation of CMOS inverter.	
2.	To study the concept of combinational logic circuits.	
3.	To study the concept of sequential logic circuits.	
4.	To introduce the architectures of VLSI system.	
5.	To learn about the interconnect and clocking process.	

MOS TRANSISTOR PRINCIPLES AND CMOS INVERTER

MOS(FET)Transistor Characteristic under Static and Dynamic Conditions, MOS Transistor Secondary Effects, Process Variations, Technology Scaling, Internet Parameter and electrical wise models CMOS Inverter - Static Characteristic, Dynamic Characteristic, Power, Energy and Energy Delay parameters.

COMBINATIONAL LOGIC CIRCUITS

9

9

Propagation Delays, Stick diagram, Layout diagrams, Examples of combinational logic design, Elmore's constant, Dynamic Logic Gates, Pass Transistor Logic, Power Dissipation, Low Power Design principles.

UNIT-III	FIELD EFFECT TRANSISTORS	9
Drain and Tra	ansfer characteristics, Current equations, Pinch off voltage and significance	of
JFET, Drain	and Transfer Characteristics, Threshold voltage, Channel length modulation	of
MOSFET, Co	MOSFET, Comparison of MOSFET with JFET.	

UNIT-IV

UNIT-I

UNIT-II

SPECIAL SEMICONDUCTOR DEVICES

9

MESFET, FINFET, PINFET, CNTFET, Schottky barrier diode, Zener diode, Varactor diode, Tunnel diode, LASER diode and LDR.

Approved by BoS Chairman

POWER DEVICES AND DISPLAY DEVICES

UJT, SCR, Diac, Triac, Power BJT, LED, LCD, Phototransistor, Opto Coupler, Solar cell.

UNIT-V

Total Instructional hours:45

9

	Course Outcomes: Students will be able to
CO1	Explain the V-I characteristic of PN diode
CO2	Describe the models and equivalence circuits of Bipolar Junction Transistors
CO3	Explain the characteristic of Field Effect Transistors
CO4	Operate the Special Semiconductor Devices such as MESFET, FINFET, LASER diode and LDR
CO5	Operate the basic electronic devices such as power Bipolar Transistors, Power control devices, LED, LCD and other Optoelectronic devices

	Text Books
1.	Jan Rabaey, Anantha Chandrakasan, B Nikolic, "Digital Integrated Circuits: A Design Perspective". Second Edition, Feb 2003, Prentice Hall of India.
2	Jacob Baker "CMOS: Circuit Design, Layout, and Simulation, Third Edition", Wiley IEEE Press 2010 3rd Edition.

	Reference Books
1.	M J Smith, "Application Specific Integrated Circuits", Addisson Wesley, 1997.
2.	N.Weste, K. Eshraghian, "Principles of CMOS VLSI Design". Second Edition, 1993 Addision Wesley.

Ma

Approved by BoS Chairman

R2023------dhi Institute of Technology

	M23AEE101-COMPUTERARCHITECTURE AND	L	т	Р	С
M.E.	PARALLEL PROCESSING (Common to AE&VLSI)	3	0	0	3

	Course Objectives	
1.	1. To study various types of processor architectures and the importance of scalable	
	architectures.	
2.	To introduce parallel processing and pipelining.	
3.	To learn about the memory hierarchy	
4.	To study the multiprocessor architecture	
5.	To study the multicore architecture	

UNIT-I	COMPUTER DESIGN AND PERFORMANCE MEASURES	9
Fundament	als of Computer Design – Parallel and Scalable Architectures – Multiproces	sors-
Multi-vecto	and SIMD architectures – Multithreaded architectures – Stanford	Dash
multiproces	sor – KSR1 - Data-flow architectures - Performance Measures.	

UNIT-II	PARALLEL PROCESSING, PIPELINING AND ILP	9
Instruction L	evel Parallelism and Its Exploitation - Concepts and Challenges - Pipelining proce	ssors
-Overcomin	g Data Hazards with Dynamic Scheduling – Dynamic Branch Prediction - Specula	ation -
Multiple Issu	ue Processors - Performance and Efficiency in Advanced Multiple Issue Processors	S.

UNIT-III	MEMORY HIERARCHY DESIGN	9
-	erarchy - Memory Technology and Optimizations – Cache memory – Optimiza Performance – Memory Protection and Virtual Memory - Design of Me	

una b

R2023------KIT- Kalaignarkarunanidhi Institute of Technology

UNIT-IV	MULTIPROCESSORS	9
Symmetric	and distributed shared memory architectures - Cache coherence issues -	
Performanc	e Issues – Synchronization issues – Models of Memory Consisten	cy -
Interconnec	tion networks – Buses, crossbar and multi-stage switches.	

MULTI-CORE ARCHITECTURES

UNIT-V

Software and hardware multithreading – SMT and CMP architectures – Design issues – Casestudies – Intel Multi-core architecture – SUN CMP architecture – IBM cell architecture–hp architecture.

Total Instructional hours:45

9

	Course Outcomes: Students will be able to	
CO1	Explain the multiprocessors and its performance measure	
CO2	Explain the concept of parallel processing and pipelining	
CO3	Analyze about the memory hierarchy design	
CO4	Outline the issues related to multiprocessors	
CO5	Compare multicore architectures	
	Text Books	
1.	 A David E.Culler, JaswinderPalSingh, "Parallel Computing Architecture: A hardware /software approach", MorganKaufmann / Elsevier, 1997 	
2.	Dimitrios Soudris, Axel Jantsch, "Scalable Multi-core Architectures: Design Methodologies and Tools", Springer, 2012.	

	Reference Books			
1.	Hwang Briggs, "Computer Architecture and parallel processing", McGrawHill, 1984.			
2.	JohnL.Hennessey and David A.Patterson," Computer Architecture– A quantitative			
	approach",MorganKaufmann/Elsevier,4th.Edition,2007.			

ma

Approved by BoS Chairman

M.E.	M23AEE102- ELECTROMAGNETIC INTERFERENCE	L	т	Ρ	С
	AND COMPATIBILITY	3	0	0	3

	Course Objectives		
1.	To study the basics of EMI.		
2.	To learn the coupling mechanism.		
3.	To introduce the problems in EMI.		
4.	To study the different standards.		
5.	To learn the measurement techniques for immunity.		

UNIT-IBASIC THEORY9Introduction to EMI and EMC, Intra and inter system EMI, Elements of Interference, Sources and
Victims of EMI, Conducted and Radiated EMI emission and susceptibility, Case Histories, Radiation
hazards to humans, Various issues of EMC, EMC Testing categories EMC Engineering Application.

UNIT-II

COUPLING MECHANISM

9

9

Electromagnetic field sources and Coupling paths, Coupling via the supply network, Common mode coupling, Differential mode coupling, Impedance coupling, Inductive and Capacitive coupling, Radioactive coupling, Ground loop coupling, Cable related emissions and coupling, Transient sources, Automotive transients.

UNIT-III

EMI MITIGATION TECHNIQUES

Working principle of Shielding and Murphy's Law, LF Magnetic shielding, Apertures and shielding effectiveness, Choice of Materials for H, E, and free space fields, Gasketting and sealing, PCB Level shielding, Principle of Grounding, Isolated grounds, Grounding strategies for Large systems, Grounding for mixed signal systems, Filter types and operation, Surge protection devices, Transient Protection.

UNIT-IV	STANDARD AND REGULATION	9		
Need for	Standards, Generic/General Standards for Residential and Industrial environmen	t, Basic		
Standards	, Product Standards, National and International EMI Standardizing Organizatior	ns; IEC,		
ANSI, FC	C, AS/NZS, CISPR, BSI, CENELEC, ACEC. Electro Magnetic Emission and susc	eptibility		
standards	and specifications, MIL461E Standards.			
UNIT-V	EMI TEST METHODS AND INSTRUMENTATION	9		
Fundame	ntal considerations, EMI Shielding effectiveness tests, Open field test, TEM ce	ell for		
immunity	test, Shielded chamber, Shielded anechoic chamber, EMI test receivers, Spe	ctrum		
analyzer,	EMI test wave simulators, EMI coupling networks, Line impedance stabilization netw	vorks,		
Feed thro	ugh capacitors, Antennas, Current probes, MIL -STD test methods, Civilian STI	D test		
methods.				
	Total Instructional hour	s:45		
	Course Outcomes: Students will be able to			
CO1 Expl	ain the multiprocessors and its performance measure			
CO2 Expl	ain the concept of parallel processing and pipelining			
CO3 Anal	ze about the memory hierarchy design			
CO4 Outli	ne the issues related to multiprocessors			
CO5 Com	pare multicore architectures			
Tayt Deake				

	Text Books				
1.	A David E.Culler, Jaswinder PalSingh, "Parallel Computing Architecture: A hardware				
	/software approach", MorganKaufmann / Elsevier,1997				
2.	Dimitrios Soudris, Axel Jantsch, "Scalable Multi-core Architectures:				
	Design Methodologies and Tools", Springer, 2012.				
	Reference Books				
1.	Hwang Briggs, "Computer Architecture and parallel processing", McGrawHill, 1984.				
2.	JohnL.Hennessey and David A.Patterson," Computer Architecture– A quantitative				
	approach",MorganKaufmann/Elsevier,4th.Edition,2007.				

aprillion

Approved by BoS Chairman

Т

Т

M.E.	M23AEE103 - NEURAL NETWORKS AND	L	т	Р	С
	APPLICATIONS (Common to AE & VLSI)	3	0	0	3

	Course Objectives
1.	To introduce the artificial neural network concepts.
2.	To study various types of artificial neural network architectures.
3.	To study advanced artificial neural network concepts.

UNIT-I	INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS	9	
Neuro-physiology - General Processing Element - ADALINE - LMS learning rule - MADALINE			
– MR2 trair	ing algorithm.		

UNIT-II	BPN AND BAM	9			
Back Propa	Back Propagation Network - updating of output and hidden layer weights -application of BPN —				
associative memory - Bi-directional Associative Memory - Hopfield memory -traveling sales					
man proble	m				
I					

UNIT-III	SIMULATED ANNEALING AND CPN			
		9		
Annealing,	Boltzmann machine - learning - application - Counter Propagation netw	ork -		
architecture	-training - Applications.			

UNIT-IV	SOM AND ART	9
	ng map - learning algorithm - feature map classifier - applications - archite contained on a contrained on an a	cture of

Journa

Approved by BoS Chairman

R2023------diamondria R2023------ KIT- Kalaignarkarunanidhi Institute of Technology

UNIT-V	NEOCOGNITRON	9		
	e of Neocognitron - Data processing and performance of architecture of spacio – tworks for speech recognition.			
Total Instructional hours				
Course Outcomes: Students will be able to				

	Course Outcomes: Students will be able to
CO1	Explain the concepts of neural networks and different training / learning algorithms
CO2	Design BPNN to solve real time problems
CO3	Apply the concept of counter propagation network for various applications
	Illustrate problem-solving based on pattern matching with specified Self Organizing Map algorithm
CO5	Apply spatial-temporal networks for speech recognition

	Text Books
1.	J.A.Freeman and B.M.Skapura, "Neural Networks, Algorithms Applications and Programming Techniques", Addison-Wesely, 2003.
2.	Laurene Fausett, "Fundamentals of Neural Networks: Architecture, Algorithms and Applications", Prentice Hall, 2004

	Reference Books									
1.	Simon Haykin, "Neural Networks & Learning Machines", third edition Pearson Education 2011.									
2.	MartinT.Hagan,Howard B.Demuth,MarkBeale,"Neural Network Design", Thomson 2008.									

una ph

Approved by BoS Chairman

M.E.	M23AEP101- ELECTRONICS SYSTEM DESIGN	L	т	Р	С
IVI.C.	LABORATORY-I	0	0	4	2

	Course Objectives								
1.	To study of different interfaces.								
2	To learn asynchronous and clocked synchronous sequential circuits.								
3	To understand the concept of builtin self-test and fault diagnosis.								

	List of Experiments
Expt.No.	Description of the Experiments
1.	System design using PIC, MSP430, 51 Microcontroller and 16-bit Microprocessor - 8086
2.	Study of different interfaces (using embedded microcontroller)
3.	Implementation of Adaptive Filters and multistage multirate system in DSP Processor
4.	Simulation of QMF using Simulation Packages
5.	Analysis of Asynchronous and clocked synchronous sequential circuits
6.	Builtin self-test and fault diagnosis
7.	Sensor design using simulation tools
8.	Design and analysis of real time signal processing system — Data acquisition and signal processing
	Total Instructional hours:60

Course Outcomes: Students will be able toC01ApplyPIC,MSP430,51Microcontroller and 8086 for system designC02Examine the simulation of QMFC03Design sensor using simulation toolsC04Design and analyse the realtime signal processing systemC05Design and analyse the data acquisition system

una

Approved by BoS Chairman

	LIST OF EQUIPMENT FOR A BATCH OF 30 STUDEN	TS
SI. No.	Description of the Equipment	Quantity Required (Nos.)
1.	Desktop computer	25
2.	PIC16XXX/18XXX Microcontroller development system with relevant IDE, Interfacing hardware like matrix key pad, seven segment display, LCD module, point LED,switches,I ² Cbased RTC and EPROM, temperature sensor, buzzer etc and programming facility	5
3.	MSP430 Microcontroller development system with relevant IDE, interfacing hardware like matrix key pad, seven segment display, LCD module, point LED, switches,I ² C based RTC and EPROM, temperature sensor, buzzer etc and programming facility/ARM Processor	5
4.	8051 Microcontroller development system with relevant IDE, interfacing hardware like matrix keypad, seven segment display, LCD module, point LED, switches, I ² C based RTC and EPROM, temperature sensor, buzzer etc and programming facility	5
5.	8086 Development trainer with basic interfacing modules	5
6.	TMS320CXXXX DSP based Development trainer	10

aprilla

Approved by BoS Chairman

	Seme	ster II								
Course Code	Course Name	СТ	Instructiona Hours				al		Assessment	
			СР	L	Τ	Ρ	С	CIA	ESE	Total
Theory / Theory	Theory / Theory with Practical									
M23AET201	Soft Computing and Optimization Techniques	PC	3	3	0	0	3	40	60	100
M23AET202	Embedded System Design	PC	3	3	0	0	3	40	60	100
M23AET203	Hardware-Software Co-Design	PC	3	3	0	0	3	40	60	100
M23AET204	Power Electronics and Applications	PC	3	3	0	0	3	40	60	100
	Professional Elective - II	PE	3	3	0	0	3	40	60	100
	Professional Elective - III	PE	3	3	0	0	3	40	60	100
Practical	•								•	
M23AEP201	Electronics System Design Laboratory – II	PC	4	0	0	4	2	60	40	100
M23CEP203	Article Writing and Seminar	CEC	2	0	0	2	1	100	-	100
	Total credits to be earned						21			

	PROFESSIONAL ELECTIVES(PE)									
	Semester – II									
	Elective	— II								
Course	Course Name	СТ	Ins	truct	iona	al Ho	urs	Assessment		
Code			СР	L	Т	Ρ	С	CIA	ESE	Total
Theory / Theor	y with Practical									
M23VDT103	CAD for VLSI Circuits	PE	3	3	0	0	3	40	60	100
M23VDE203	Nano Electronics	PE	3	3	0	0	3	40	60	100
M23AEE201	High Performance Networks	PE	3	3	0	0	3	40	60	100
M23AEE202	Wireless Adhoc and Sensor Networks	PE	3	3	0	0	3	40	60	100

	Elective – III										
Course	CourseCourse NameCTCodeCourse NameCT		СТ	Ins	truct	iona	al Ho	urs	Assessment		
Code			•••	СР	L	Т	Ρ	С	CIA	ESE	Total
Theory / Theo	Theory / Theory with Practical										
M23AEE203	RF System Design	F	PE	3	3	0	0	3	40	60	100
M23AEE204	Speech and Audio Signal Processing	F	PE	3	3	0	0	3	40	60	100
M23VDT201	Device Modeling	F	PE	3	3	0	0	3	40	60	100

1

Approved by BoS Chairman

Μ	23AEE205	Robotics	PE	3	3	0	0	3	40	60	1	00
	M.E.	M23AET201-SOFT COMPUTING ANDOPTIMIZATION					L	Т	Р	С		
			TECHNIQUES (Common to AE & VLSI)						0	3		I

	Course Objectives
1.	To understand various neural networks and learning methods.
2.	To overview of Fuzzy logic.
3.	To study the concept of Neuro–Fuzzy modeling.
4.	To introduce the optimization techniques.

UNIT-I	NEURAL NETWORKS	9
Machine Learning using Neural Network, Learning algorithms, Supervised Learning Neural		
Networks – Feed Forward Networks, Radial Basis Function, Unsupervised Learning Neural		
Networks – S	elf Organizing map , Adaptive Resonance Architectures, Hopfield network.	

UNIT-II	FUZZY LOGIC	9
Fuzzy Sets – Operations on Fuzzy Sets – Fuzzy Relations – Membership Functions-Fuzzy Rules and		
Fuzzy Reasoning – Fuzzy Inference Systems – Fuzzy Expert Systems – Fuzzy Decision Making.		

UNIT-III	NEURO-FUZZY MODELING	9
Adaptive Neuro-Fuzzy Inference Systems – Coactive Neuro-Fuzzy Modeling – Classification		
and Regression Trees – Data Clustering Algorithms – Rule base Structure Identification –Neuro-Fuzzy		
Control – Case Studies.		

UNIT-IV	UNIT-IV CONVENTIONAL OPTIMIZATION TECHNIQUES	
Introduction 1	o optimization techniques, Statement of an optimization problem, class	ification,
Unconstrained	d optimization-gradient search method-Gradient of a function, steepest g	gradient-
conjugate gra	adient, Newton's Method, Marquardt Method, Constrained optimization -se	quential
linear program	nming, Interior penalty function method, external penalty function method.	

~ 10

UNIT-V	EVOLUTIONARY OPTIMIZATION TECHNIQUES	9
Genetic algorithm - working principle, Basic operators and Terminologies, Building block hypothesis Travelling Salesman Problem, Particle swam optimization, Ant colony optimization.		thesis,

Total Instructional hours:45

	Course Outcomes: Students will be able to		
CO1	Outline the basics of neural network and learning methods		
CO2	Outline the basics of fuzzy logic		
CO3	Examine machine learning through Neural Fuzzy concept		
CO4	Explain the conventional optimization techniques		
CO5	Explain the evolutionary optimization techniques		

	Text Books			
1.	1. DavidE.Goldberg, "Genetic Algorithms in Search, Optimization and Machine learning", Addison			
	wesley, 2009.			
2.	George J.Klir and BoYuan, "FuzzySets and FuzzyLogic-Theory and Applications", PrenticeHall,			
	1995.			

	Reference Books		
1.	James A.Freeman and David M.Skapura, "NeuralNetworks Algorithms, Applications, and		
	Programming Techniques",Pearson Edn.,2003.		
2.	Jyh-ShingRogerJang, Chuen-TsaiSun, EijiMizutani, "Neuro-Fuzzy and SoftComputing", Prentice-		
	Hall of India,2003.		

	1.E M23AET202 - EMBEDDED SYSTEM DESIGN (Common to VLSI & AE)	L	Т	Ρ	С
M.E		3	0	0	3

	Course Objectives	
1.	To introduce the overview, design metrics and methodology of embedded systems.	
2.	To introduce architecture of single purpose processor.	
3.	To understand various protocols of embedded system.	
4.	To understand the State machine models.	
5.	To introduce software development tools.	

UNIT- I	EMBEDDED SYSTEM OVERVIEW	9
Embedded Sy	rstem Overview, Design Challenges – Optimizing Design Metrics, Design Metho	odology,
RT-Level Corr	binational and Sequential Components, Optimizing Custom Single-Purpose Proce	ssors

UNIT-	II
-------	----

GENERAL AND SINGLE PURPOSE PROCESSOR

Basic Architecture, Pipelining, Superscalar and VLIW architectures, Programmer's view, Development Environment, Application-Specific Instruction-Set Processors (ASIPs) Microcontrollers, Timers, Counters and watchdog Timer, UART, LCD Controllers and Analog-to-Digital Converters, Memory Concepts.

Basic Protocol Concepts, Microprocessor Interfacing – I/O Addressing, Port and Bus-Based I/O, Arbitration, Serial Protocols, I2C, CAN and USB, Parallel Protocols – PCI and ARM Bus, Wireless Protocols – IrDA, Bluetooth, IEEE 802.11.

UNIT- IV STATE MACHINE AND CONCURRENT PROCESS MODELS

9

9

Basic State Machine Model, Finite-State Machine with Data path Model, Capturing State Machine in Sequential Programming Language, Program-State Machine Model, Concurrent Process Model, Communication among Processes, Synchronization among processes, Dataflow Model, Real-: Hardware/Software Co-Simulation, Reuse: Intellectual Property Cores, Design Process Models.

UNIT- V EMBEDDED SOFTWARE DEVELOPMENT TOOLS AND RTOS

9

Compilation Process – Libraries – Porting kernels – C extensions for embedded systems – emulation and debugging techniques – RTOS – System design using RTOS.

Total Instructional hours:45

Course Outcomes: Students will be able to	
CO1	Explain the design challenges and basic metrics of embedded system
CO2	Explain the architecture and pipelining process
CO3	Analyse different protocols
CO4	Examine the state machine and design process models.
CO5	Outline embedded software development tools and RTOS.

	Reference Books
1.	Bruce Powel Douglas, "Real time UML, second edition: Developing efficient objects for embedded systems", 3rd Edition 1999, Pearson Education.
2.	Daniel W. Lewis, "Fundamentals of embedded software where C and assembly meet", Pearson Education, 2002.
3.	Frank Vahid and Tony Gwargie, "Embedded System Design", John Wiley & sons, 2002.
4.	Steve Heath, "Embedded System Design", Elsevier, Second Edition, 2004.

Approved by BoS Chairman

	M23AET203 - HARDWARE-SOFTWARE	L	т	Р	С	
M.E	CO-DESIGN (Common to VLSI & AE)	3	0	0	3	

	Course Objectives
1.	
	To acquire the knowledge about system specification and modelling.
2.	To learn the formulation of partitioning.
3.	To learn the co-synthesis.
4.	To study the different technical aspects about prototyping and emulation.
5.	To introduce the design specification and verification.

UNIT-1	SYSTEM SPECIFICATION AND MODELLING	9
Embedded Sy	stems, Hardware/Software Co-Design, Co-Design for System Specification and M	odeling ,

Co-Design for Heterogeneous Implementation - Single-Processor Architectures with one ASIC and many ASICs, Multi-Processor Architectures, Comparison of Co- Design Approaches, Models of Computation, Requirements for Embedded System Specification.

HARDWARE / SOFTWARE PARTITIONING

The Hardware/Software Partitioning Problem, Hardware-Software Cost Estimation, Generation of the Partitioning Graph, Formulation of the HW/SW Partitioning Problem, Optimization, HW/SW Partitioning based on Heuristic Scheduling, HW/SW Partitioning based on Genetic Algorithms.

UNIT-III

UNIT-II

.

HARDWARE / SOFTWARE CO-SYNTHESIS

The Co-Synthesis Problem, State-Transition Graph, Refinement and Controller Generation, Co-Synthesis Algorithm for Distributed System- Case Studies with any one application.

UNIT-IV

PROTOTYPING AND EMULATION

9

9

9

9

Introduction, Prototyping and Emulation Techniques, Prototyping and Emulation Environments, Future Developments in Emulation and Prototyping ,Target Architecture- Architecture Specialization Techniques ,System Communication Infrastructure, Target Architectures and Application System Classes, Architectures for Control-Dominated Systems, Architectures for Data-Dominated Systems Mixed Systems and Less Specialized Systems.

UNIT- V	DESIGN SPECIFICATION AND VERIFICATION	9
Concurrency,	Coordinating Concurrent Computations, Interfacing Components, Verification ,La	nguages
for System-Le	evel Specification and Design System-Level Specification ,Design Representation	ation for
System Level	Synthesis, System Level Specification Languages, Heterogeneous Specification	and
Multi-Languag	e Co- simulation.	

Total Instructional hours:45

Course Outcomes: Students will be able to	
CO1	Outline the system specification and modelling
CO2	Explain the partitioning and scheduling Algorithm
CO3	Explain the co-synthesis algorithm
CO4	Compare various architectures od prototyping and emulation
CO5	Analyze about the design specification and validate its functionality by simulation

	Reference Books
1.	Giovanni De Micheli, Rolf Ernst Morgon, "Reading in Hardware/Software Co-Design", Kaufmann
	Publishers, 2001.
2.	Jorgen Staunstrup, Wayne Wolf, "Hardware/Software Co-Design": Principles and Practice",
	Kluwer Academic Pub, 1997.
3.	Ralf Niemann, "Hardware/Software Co-Design for Data Flow Dominated Embedded Systems"
	Kluwer Academic Pub, 1998.

A

Approved by BoS Chairman

	M23AET204 - POWER ELECTRONICS AND	L	т	Р	С		
	M.E	APPLICATIONS	3	0	0	3	

	Course Objectives	
1.	To impart knowledge of power semiconductor technologies and their advancement in the field of power conversion.	
2.	To address the concepts of inverters	
3.	To address the underlying concepts of AC to AC converters	
4.	To review the concepts of Switched Mode Power Supply.	
5.	To address the underlying concepts of different DC to AC converters	

UNIT-I	POWER SEMICONDUCTOR DEVICES
•••••	

Introduction - Power Diodes - Power Transistors - Power MOSFETs – IGBTs - Thyristor family: SCR, TRIAC, GTO, IGCT - Static and Dynamic characteristics –Introduction to intelligent power module Protection circuits - Series and parallel connections – Interpretation of power device data sheet

UNIT-II

AC TO DC CONVERTERS

Uncontrolled Bridge Rectifiers: Single Phase and Three Phase Uncontrolled Rectifier with R, RL and RLE load - Continuous and discontinuous mode of operation - Average, RMS load voltage and load current, input power factor. Controlled Bridge Rectifiers – Single Phase and Three Phase (no analysis) Half and Fully Controlled Bridge Rectifier with R, RL and RLE load - Effect of free-wheeling diode - Continuous and Discontinuous Mode of operation - Average, RMS load voltage and load current, input power factor – Dual converters – HVDC Transmission. Introduction to Utility Interface Need for utility interface- Principle of operation of PWM rectifier.

UNIT-III

AC TO AC CONVERTERS

9

9

9

Single phase full wave controller with R and RL load - Estimation of RMS load voltage, RMS load current and input power factor - Three phase AC voltage controllers (No analysis)- Single phase transformer connection changers- Introduction to cyclo converters- Introduction to AC voltage controller with PWM control.

UNIT-V

UNIT-IV	DC TO DC CONVERTERS	9
		1

Introduction - Time ratio control - Principle of step-up and step-down operation - Two quadrant and four quadrant DC choppers with R, RL and RLE load - Estimation of average load voltage and load current for continuous current operation –Switched mode power Converter – Ideal buck and Boost converter (steady state analysis) – Fly-Back Type Switched Mode Power Supply (no analysis) - SMPS (Half and full bridge)

DC TO AC CONVERTERS

9

Types - Voltage source and current source inverters - Single phase bridge inverters - Three phase bridge inverters -PWM Techniques - Control of AC output voltage - Harmonic reduction- UPS.

Total Instructional hours:45

Cour	Course Outcomes: Students will be able to	
CO1	Select power electronic devices for specific applications.	
CO2	Understand the different types of inverters.	
CO3	Understand the functioning of the different types of converters	
CO4	Understand the concept of Chopper	
CO5	Understand the concepts of Inverters and PWM techniques	

	Text Books	
1.	Rashid M H, "Power Electronics – Circuits, Devices and Applications", 4th Edition, Prentice Hall	
	of India, New Delhi, 2014.	
2.	P.S.Bimbhra, "Power Electronics", 4th Edition, Khanna Publishers, New Delhi, 2006.	

	Reference Books			
1.	Ned Mohan, Tore M. Undeland, William P. Robbins, "Power Electronics: Converters,			
	Applications, and Design", 3 rd Edition, John Wiley and Sons, Inc., New York, 2003.			
2.	2. Vedam Subramanyam, "Power Electronics", New Age International, New Delhi, 1996.			
3.	Joseph Vithayathil, "Power Electronics", Tata McGraw-Hill, New Delhi, 2010.			
	Publishing Company Limited, New Delhi, 2006.			

Approved by BoS Chairman

PROFESSIONAL ELECTIVES - II

1

	M23VDT103- CAD FOR VLSI CIRCUITS	L	Т	Р	С
M.E.	(Common to VLSI & AE)	3	0	0	3

	Course Objectives	
1.	To introduce the VLSI Design methodologies.	
2.	To study the algorithms related to placement and partitioning.	
3.	To study the various routing and floor planning algorithms.	
4.	To learn the synthesis processes understand VLSIdesign automation tools.	
5.	To study the high level synthesis.	

UNIT-I	INTRODUCTION TO VLSI DESIGN FLOW

Introduction to VLSI Design methodologies, Basics of VLSI design automation tools, Algorithmic Graph Theory and Computational Complexity, Tractable and Intractable problems, General purpose methods for combinatorial optimization.

UNIT-II	LAYOUT, PLACEMENT AND PARTITIONING	9
	nation. Design when Ducklass formulation. Also with me for sometimist much some st	

Layout Compaction, Design rules, Problem formulation, Algorithms for constraint graph compaction, Placement and partitioning, Circuit representation, Placement algorithms, Partitioning.

UNIT-III

FLOOR PLANNING AND ROUTING

9

9

Floor planning concepts, Shape functions and floor plan sizing, Types of local routing problems, Area routing, Channel routing, Global routing, Algorithms for global routing.

Approved by BoS Chairman

UNIT-IV

UNIT-V

SIMULATION AND LOGIC SYNTHESIS

9

9

Simulation, Gate-level modeling and simulation, Switch-level modeling and simulation, Combinational Logic Synthesis, Binary Decision Diagrams, Two Level Logic Synthesis.

HIGH LEVEL SYNTHESIS

Hardware models for high level synthesis, internal representation, allocation, assignment and scheduling, scheduling algorithms, Assignment problem, High level transformations.

Total Instructional hours:45

	Course Outcomes: Students will be able to	
CO1	Outline the flow of VLSI design	
CO2	Explain the algorithms related to placement and partitioning and layout rules	
CO3	Outline floor planning and routing	
CO4	Explain Simulation and Logic Synthesis	
CO5	Examine the hardware models for high level synthesis	

	Text Books
1.	N.A. Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer Academic Publishers,
	2002.
2.	S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley & Sons, 2002.

	Reference Books
1.	Sadiq M. Sait, Habib Youssef, "VLSI Physical Design automation: Theory and Practice", World Scientific, 1999.
2.	StevenM.Rubin, "ComputerAidsfor VLSIDesign", AddisonWesleyPublishing, 1987.

Approved by BoS Chairman

	M23VDE203-NANOELECTRONICS	L	т	Р	С
M.E.	(Common to VLSI & AE)	3	0	0	3

	Course Objectives	
1.	To understand the semiconductor nano devices.	
2.	To study the materials involved in nano devices.	
3.	To learn the operation of nano thermalsensors.	
4.	To understand various materials used in gas sensors.	
5.	To study the operation of biosensor.	

UNIT-I	SEMICONDUCTOR NANO DEVICES	9	
Single-Elec	tron Devices; Nano scale MOSFET – Resonant Tunneling Transistor - S	ingle-	
Electron T	Electron Transistors; Nanorobotics and Nano manipulation; Mechanical Molecular Nano		
devices; Na	devices; Nano computers: Optical Fibers for Nano devices; Photochemical Molecular Devices;		
DNA-Based	DNA-Based Nano devices; Gas-Based Nano devices.		

UNIT-II	ELECTRONIC AND PHOTONIC MOLECULAR MATERIALS	9		
Preparation	- Electroluminescent Organic materials - Laser Diodes - Quantum well la	sers:-		
Quantum ca	Quantum cascade lasers- Cascade surface-emitting photonic crystal laser- Quantum dot lasers -			
Quantum wi	re lasers:- White LEDs - LEDs based on nanowires - LEDs based on nanotubes -	LEDs		
based on na	based on nanorods - High Efficiency Materials for OLEDs- High Efficiency Materials for OLEDs -			
Quantum well infrared photo detectors.				

UNIT-III	THERMAL SENSORS	9		
Thermal er	hergy sensors -temperature sensors, heat sensors - Electromagnetic sensor	ors -		
electrical re	electrical resistance sensors, electrical current sensors, electrical voltage sensors, electrical			
power sens	power sensors, magnetism sensors - Mechanical sensors - pressure sensors, gas and liquid			
flow sensors, position sensors - Chemical sensors - Optical and radiation sensors.				

1

UNIT-IV	GAS SENSOR MATERIALS	9
Criteria for	the choice of materials – Experimental aspects– materials, propert	ties,
measureme	nt of gas sensing property, sensitivity, Discussion of sensors for various gases,	Gas
sensors bas	ed on semiconductor devices.	

UNIT-V	BIOSENSORS	9
	DNA based biosensors – Protein based biosensors – materials for biosensor - fabrication of biosensors - future potential.	
	Total Instructional ho	ours:45

	Course Outcomes: Students will be able to	
CO1	Classify the types of Nano devices operation of bio sensor	
CO2	Analyze the materials used in Nano device	
CO3	Explain the operation of thermal sensor CO4:Examine the operation of gas sensor	
CO4	Examine the operation of gas sensor	
CO5	Outline the operation of bio sensor	

	Text Books	
1.	K.E. Drexler, "Nanosystems", Wiley, 1992.	
2.	M.C.Petty, "Introduction to Molecular Electronics", 1995.	

	Reference Books	
1.	W.Ranier, "Nano Electronics and Information Technology ", Wiley, 2003.	

Approved by BoS Chairman

	M23AEE201- HIGH PERFORMANCE	L	т	Р	С
M.E.	NETWORKS (Common to AE & VLSI)	3	0	0	3

	Course Objectives		
1.	To introduce various systems related to networks.		
2.	To study the applications of multimedia networks.		
3.	To learn the concept of advanced networks.		
4.	To study the various traffic modeling.		
5.	To learn about network security in many layers and network management.		

UNIT-I	INTRODUCTION	9	
Review of OSI, TCP/IP; Multiplexing, Modes of Communication, Switching, Routing. SONET			
DWDM – D	SL – ISDN – BISDN, ATM.		

UNIT-II	MULTIMEDIA NETWORKING APPLICATIONS	9			
Streaming s	Streaming stored Audio and Video – Best effort service – protocols for real time interactive				
	 Beyond best effort – scheduling and policing mechanism – integrated services. 	vices –			

UNIT-III	ADVANCED NETWORKS CONCEPTS	
		9
VPN-Remot	e-Access VPN, site-to-site VPN, Tunneling to PPP, Security in VPN.MPLS- op	eration,
Routing, Tu	nneling and use of FEC, Traffic Engineering, MPLS based VPN, overlay network	s- P2P
connections		

UNIT-IV

TRAFFIC MODELLING

9

Little's theorem, Need for modeling, Poisson modeling and its failure, Non- poisson models, Network performance evaluation.

Approved by BoS Chairman

UNIT-V	NETWORK SECURITY AND MANAGEMENT	9	
Principles o	f cryptography – Authentication – integrity – key distribution and certification –	Access	
control and:	control and: fire walls - attacks and counter measures - security in many layers. Infrastructure for		
network ma	nagement – The internet standard management framework – SMI, MIB, SNMP, S	Security	
and adminis	tration – ASN.1.		
	Total Instructional ho	ours:45	

	Course Outcomes: Students will be able to		
CO1	Outline the basic high performance network systems		
CO2	Explain the applications of multimedia networks		
CO3	Analyse the concepts of advanced networks		
CO4	Outline the traffic modelling		
CO5	Analyse the network security methods		

	Text Books				
1.	1. AunuragKumar, D.MAnjunath, JoyKuri, "Communication Networking", Morgan Kaufmann				
	Publishers,1 st Edition, 2004.				
2.	Fred Halsall and Lingana Gouda Kulkarni, "Computer Networking and the Internet", fifth				
	edition,Pearson Education, 2006.				

	Reference Books				
1.	1. HersentGurle& Petit, "IPTelephony, packet Pored Multimedia communication Systems", Pearson				
	Education, 2003.				
2.	J.F.Kurose&K.W.Ross,"Computer Networking - A topdown approach featuring the				
	internet"Pearson,2 nd Edition,2003.				

7

Approved by BoS Chairman

9

		M23AEE202 - WIRELESS ADHOC AND SENSOR	L	т	Р	С	
M.E	Ξ.	NETWORKS (Common to AE &VLSI)	3	0	0	3	

	Course Objectives
1.	To understand the basics ofAd-hoc, Sensor Networks and various fundamental and emerging protocols of all layers.
2.	To study about the routing architecture of sensor networks.
3.	To understand the nature and applications of Ad-hoc and sensor networks.
4.	To understand various security practices and protocols of Ad-hoc and Sensor networks.
5.	To understand the basics of Ad-hoc, Sensor Networks and various fundamental and emerging protocols of all layers.

UNIT-I	MAC & TCP IN AD HOC NETWORKS	9		
Fundament	als of WLANs - IEEE 802.11 Architecture - Self configuration and	Auto		
configuration-Issues in Ad-Hoc Wireless Networks - MAC Protocols for Ad-Hoc Wireless				
Networks –	Networks – Contention Based Protocols - TCP over Ad-Hoc networks-TCP protocol overview -			
TCP and MANETs – Solutions for TCP over Ad-Hoc Networks.				

UNIT-II

ROUTING IN AD HOC NETWORKS

Routing in Ad-Hoc Networks- Introduction-Topology based versus Position based Approaches-Proactive, Reactive, Hybrid Routing Approach-Principles and issues – Location services - DREAM – Quorums based location service – Grid – Forwarding strategies – Greedy packet forwarding – Restricted directional flooding- Hierarchical Routing- Issues and Challenges in providing QoS.

UNIT-III	MAC, ROUTING & QOS IN WIRELESS SENSOR NETWORKS	9		
Introduction - Architecture - Single node architecture - Sensor network design considerations -				
Energy Efficient Design principles for WSNs – Protocols for WSN – Physical Layer : Transceiver				
Design considerations – MAC Layer Protocols – IEEE802.15.4 Zigbee – Link Layer and Error Control				
issues - Routing Protocols – Mobile Nodes and Mobile Robots - Data Centric & Contention Based				
Networking	Networking – Transport Protocols & QOS – Congestion Control issues – Application Layer support			

UNIT-IV	SENSOR MANAGEMENT			
Sensor Man	Sensor Management - Topology Control Protocols and Sensing Mode Selection Protocols - Time			
synchronization - Localization and positioning – Operating systems and Sensor Network				
programming – Sensor Network Simulators.				

UNIT-V	SECURITY IN ADHOC AND SENSOR NETWORKS	9		
Security in Ad-F	Security in Ad-Hoc and Sensor networks – Key Distribution and Management – Software based Anti-			
tamper techniques – water marking techniques – Defense against routing attacks - Secure Adhoc				
routing protocols – Broadcast authentication WSN protocols – TESLA – Biba – Sensor Network				
Security Protocols – SPINS.				
	Total Instructional he	ours:45		

	Course Outcomes: Students will be able to			
CO1	Explain the protocols developed for adhoc and sensor networks.			
CO2	Analyse different routing approaches			
CO3	Outline different architecture in ad hoc and sensor networks.			
CO4	Build a Sensor network environment for different type of applications			
CO5	Analyse about the security in sensor networks			

	Text Books
1.	AdrianPerrig, J.D.Tygar, "Secure Broadcast Communication: In Wired and
	WirelessNetworks",Springer,2006.
2.	Carlos De MoraisCordeiro, Dharma Prakash Agrawal, "Ad Hoc and Sensor Networks: Theory and
	Applications (2 nd Edition), World Scientific Publishing, 2011.

	Reference Books		
1.	C.SivaRam Murthy and B.S.Manoj, "AdHoc Wireless Networks-Architectures and		
	Protocols",Pearson Education,2004.		
2.	C.K.Toh, "AdHoc Mobile Wireless Networks", PearsonEducation, 2002.		

Approved by BoS Chairman

PROFESSIONAL ELECTIVES - III

1

M.E.	M23AEE203- RF SYSTEM DESIGN	L	т	Ρ	С
		3	0	0	3

	Course Objectives
1.	To study the physics and specifications of CMOS.
2.	To learn about impedance matching
3.	To introduce power amplifiers for RF system.
4.	To study the concept of oscillators and mixers.
5.	To learn the concept of PLL.

UNIT-I CMOSPHYSICS, TRANSCEIVER SPECIFICATIONS A				
	ARCHITECTURES			
	MOOFFT Division Nation Thermal shat flished means a size. Two word			

Introduction to MOSFET Physics, Noise: Thermal, shot, flicker, popcorn noise, Two port Noise theory, Noise Figure, THD, IP2, IP3, Sensitivity, SFDR, Phase noise –Specification distribution over a communication link, Homodyne Receiver, Heterodyne Receiver, Image reject, Low IF Receiver Architectures Direct up conversion Transmitter, Two stepup conversion Transmitter.

UNIT-II IMPEDANCE MATCHING AND AMPLIFIERS		9		
S-parameters with Smith chart, Passive IC components, Impedance matching networks, Common				
Gate, Common Source Amplifiers, OC Time constants in bandwidth estimation and enhancement,				

High frequency amplifier design, Power match and Noise match, Single ended and Differential LNAs, Terminated with Resistors and Source Degeneration LNAs.

U	Ν	П	-	
-		•••		••

FEEDBACK SYSTEMSAND POWER AMPLIFIERS

9

9

Stability of feedback systems: Gain and phase margin, Root-locus techniques, Time and Frequency domain considerations, Compensation, General model – Class A, AB, B, C, D, E and F amplifiers, Power amplifier Linearization Techniques, Efficiency boosting techniques, ACPR metric, Design considerations.

Mixer characteristics, Non-linear based mixers, Quadratic mixers, Multiplier based mixers, Single balanced and double balanced mixers, sub sampling mixers, Oscillators describing Functions, Colpitts oscillators, Resonators, Tuned Oscillators, Negative resistance oscillators, Phase noise. UNIT-V PLLAND FREQUENCY SYNTHESIZERS 9 Linearized Model, Noise properties, Phase detectors, Loop filters and Charge pumps, Integer-Nfrequency synthesizers, Direct Digital Frequency synthesizers. 9	UNIT-IV	MIXERS AND OSCILLATORS	9	
Linearized Model, Noise properties, Phase detectors, Loop filters and Charge pumps, Integer-	balanced and double balanced mixers, sub sampling mixers, Oscillators describing Function			
	UNIT-V	PLLAND FREQUENCY SYNTHESIZERS	9	

Total Instructional hours:45

	Course Outcomes: Students will be able to		
CO1	Outline the physical nature of CMOS in RF system design		
CO2	Analyze the impedance matching processing		
CO3	Explain the concept of power amplifiers in RF system design		
CO4	Build the oscillator for RF system		
CO5	CO5 Analyze the PLL for RF system		

	Reference Books		
1.	B.Razavi, "Design of Analog CMOS Integrated Circuits", McGraw Hill, 2001.		
2.	B.Razavi, "RF Microelectronics", Pearson Education,1997.		
3.	JanCrols, Michiel Steyaert, "CMOS Wireless Transceiver Design", Kluwer Academic Publishers,1997.		
4.	Recorded lectures and notes available at http://www.ee.iitm.ac.in/~ani/ee6240/		
5.	T.Lee, "Design of CMOS RF Integrated Circuits", Cambridge, 2004.		

Approved by BoS Chairman

M.E.	M23AEE204-SPEECH AND AUDIO SIGNAL	L	т	Р	С
	PROCESSING	3	0	0	3

	Course Objectives	
1.	To study basic concepts of processing speech and audio signals.	
2.	To study and analyse various M-band filter-banks for audio coding.	
3.	To understand audio coding based on transform coders.	
4.	4. To study time and frequency domain speech processing methods.	
5.	To learn the predictive analysis of speech.	

MECHANICS OF SPEECH AND AUDIO

Introduction - Review of Signal Processing Theory-Speech production mechanism – Nature of Speech signal – Discrete time modelling of Speech production – Classification of Speech sounds–Phones–Phonemes–Phonetic and Phonemic alphabets– Articulatory features. AbsoluteThreshold of Hearing-Critical Bands-Simultaneous Masking, Masking-Asymmetry, and the Spread of Masking- Non-simultaneous Masking - Perceptual Entropy –Basic measuring philosophy-Subjective versus objective perceptual testing-The perceptual audio quality measure(PAQM)-Cognitive effects in judging audio quality.

UNIT-II

UNIT-I

TIME-FREQUENCY ANALYSIS: FILTER BANKS AND TRANSFORMS

Introduction - Analysis-Synthesis Framework for M-band Filter Banks- Filter Banks for Audio Coding: Design Considerations - Quadrature Mirror and Conjugate Quadrature Filters -Tree-Structured QMF and CQF M-band Banks - Cosine Modulated "Pseudo QMF" M-band Banks -Cosine Modulated Perfect Reconstruction (PR) M-band Banks and the Modified Discrete Cosine Transform (MDCT) -Discrete Fourier and Discrete Cosine Transform - Pre-echo Distortion-Pre-echo Control Strategies.

UNIT-III

AUDIO CODING AND TRANSFORM CODERS

9

9

9

Lossless Audio Coding – Lossy Audio Coding - ISO-MPEG-1A, 2A, 2A-Advaned, 4A Audio Coding -Optimum Coding in the Frequency Domain - Perceptual Transform Coder –Branden burg-Johnston Hybrid Coder-CNET Coders-Adaptive Spectral Entropy Coding–Differential Perceptual Audio Coder-DFT Noise Substitution- DCT with Vector Quantization-MDCT with Vector Quantization.

UNIT-IV	TIME AND FREQUENCY DOMAIN METHODS FOR SPEECH PROCESSING	9
Time domain	parameters of Speech signal - Methods for extracting the parameters Energy	ergy,
Average Mag	nitude-Zero crossing Rate-Silence Discrimination using ZCR and energy S	hort
Time Fourier	analysis - Formant extraction - Pitch Extraction using time and freque	ency
domain metho	ods Homomorphic Speech Analysis: Conceptual analysis of Speech –Formant	and
Pitch Estimat	ion–Homomorphic Vocoders.	
UNIT-V	PREDICTIVE ANALYSIS OF SPEECH	9
_	PREDICTIVE ANALYSIS OF SPEECH of Linear Prediction problem in Time Domain – Basic Principle – A	•
Formulation		Auto
Formulation correlation me	of Linear Prediction problem in Time Domain – Basic Principle – A	Auto bin's
Formulation correlation me Recursive alg	of Linear Prediction problem in Time Domain – Basic Principle – A	Auto bin's ods-
Formulation correlation me Recursive alg	of Linear Prediction problem in Time Domain – Basic Principle – A ethod–Covariance method–Solution of LPC equations–Cholesky method–Dur gorithm – lattice formation and solutions – Comparison of different methor f LPC parameters – Pitch detection using LPC parameters –Formant analys	Auto bin's ods-

 Course Outcomes: Students will be able to

 C01
 Outline the speech processing concepts

 C02
 Explain the filter bank concept

 C03
 Compare various coding and coders

 C04
 Examine time and frequency domain methods for speech processing

 C05
 Explain the predictive analysis of speech

	Reference Books
1.	B.Goldand N.Morgan, "Speech and Audio Signal Processing", Wiley and Sons, 2000.
2.	L.R.Rabiner andR.W.Schaffer,"Digital Processing of Speech Signals", Prentice Hall,1978.
3.	MarkKahrs,Karlheinz Brandenburg,Kluwer, "Applications of Digital Signal Processing to Audio And Acoustics", Academic Publishers.
4.	UdoZölzer, "Digital Audio Signal Processing", Second Edition, John Wiley & sons Ltd

Approved by BoS Chairman

	M23VDT201-DEVICE MODELLING	L	т	Р	С	
M.E.	(Common to VLSI & AE)	3	0	0	3	

	Course Objectives
1.	To study the MOS capacitors and to model MOS Transistors.
2.	To learn about the MOSFET characteristics.
3.	To understand the various CMOS design parameters and their impact on performance of the
	device.
4.	To study the device level characteristics of BJT transistors.

UNIT-I	MOS	CAPACITORS	9
Surface	Potential: Accumulation,Deple	etion,andInversion,ElectrostaticPotentiala	ndCharge
Distribution	in Silicon, Capacitances in an MOS	S Structure, Polysilicon-Gate Work Fun	ction and
Depletion E	ffects, MOS under Non-equilibrium ar	nd Gated Diodes, Charge in Silicon Dioxi	de and at
the Silicon-	Oxide Interface, Effect of Interface Tr	raps and Oxide Charge on Device Chara	cteristics,
High-Field	Effects, Impact ionization and Av	valanche Breakdown, Band-to-Band 7	unneling,
Tunneling ir	to and through Silicon Dioxide, Injec	tion of Hot Carriers from Silicon into Sil	icon
Dioxide, Hig	h-Field Effects in Gated Diodes, Diele	ectric Breakdown.	

UNIT-II	MOSFET DEVICES	9	
Long-Channel	MOSFETs, Drain-Current Model, MOSFET I-V Characteristics, Sub th	nreshold	
Characteristics	Characteristics, Substrate Bias and Temperature Dependence of Threshold Voltage, MOSFET Channel		
Mobility, MOSFET Capacitances and Inversion-Layer Capacitance Effect, Short-Channel MOS			
Short-Channel Effect, Velocity Saturation and High-Field Transport Channel Length Modulation,			
Source-Drain	Source–Drain Series Resistance, MOSFET Degradation and Breakdown at High Fields.		
UNIT-III	CMOS DEVICE DESIGN	9	

1 7

Approved by BoS Chairman

MOSFET Scaling, Constant-Field Scaling, Generalized Scaling, Non- scaling Effects, Threshold Voltage, Threshold-Voltage Requirement, Channel Profile Design, Non-uniform Doping, Quantum Effect on Threshold Voltage, Discrete Dopant Effects on Threshold Voltage, MOSFET Channel Length, Various Definitions of Channel Length, Extraction of the Effective Channel Length, Physical Meaning of Effective Channel Length, Extraction of Channel Length by C–V Measurements

UNIT-IV

CMOS PERFORMANCE FACTORS

Basic CMOS Circuit Elements, CMOS Inverters, CMOS NAND and NOR Gates, Inverter and NAND Layouts, Parasitic Elements, Source–Drain Resistance, Parasitic Capacitances, Gate Resistance, Interconnect R and C, Sensitivity of CMOS Delay to Device Parameters, Propagation Delay and Delay Equation, Delay Sensitivity to Channel Width, Length, and Gate Oxide Thickness, Sensitivity of Delay to Power-Supply Voltage and Threshold Voltage, Sensitivity of Delay to Parasitic Resistance and Capacitance, Delay of Two-Way NAND and Body Effect, Performance Factors of Advanced CMOS Devices, MOSFETs in RF Circuits, Effect of Transport Parameters on CMOS Performance, Low-Temperature CMOS

UNIT-V

BIPOLAR DEVICES

N–P–N Transistors, Basic Operation of a Bipolar Transistor, Modifying the Simple Diode Theory for Describing Bipolar Transistors, Ideal Current–Voltage Characteristics, Collector Current, Base Current, Current Gains, Ideal IC–VCE Characteristics, Characteristics of a Typical n–p–n Transistor, Effect of Emitter and Base Series Resistances, Effect of Base– Collector Voltage on Collector Current, Collector Current Falloff at High Currents, Non- ideal Base Current at Low Currents, Bipolar Device Models for Circuit and Time-Dependent Analyses Basic dc Model, Basic ac Model, Small-Signal Equivalent-Circuit Model, Emitter Diffusion Capacitance, Charge-Control Analysis, Breakdown Voltages, Common-Base Current Gain in the Presence of Base–Collector Junction Avalanche, Saturation Currents in a Transistor, Relation Between BVCEO and BVCBO.

Total Instructional hours:45

9

9

Approved by BoS Chairman

	Course Outcomes: Students will be able to		
CO1	Outline the concept of MOS capacitors		
CO2	Explain the operation of MOSFET with its characteristics		
CO3	Design and model BJT device to desired specifications		
CO4	Analyze the performance metrics of CMOS		
CO5	Design and model BJT device to desired specifications		

	Text Books
1.	BehzadRazavi, "Fundamentals of Micro electronics ",Wiley Student Edition, 2 nd Edition.
2.	JPCollinge, C.A.Collinge, "Physics of Semiconductor devices", Springer 2002 Edition.

Reference Books
Yuan Taur and Tak H. Ning, "Fundamentals of Modern VLSI Devices", Cambridge University Press, Second Edition.

Approved by BoS Chairman

M.E.	M23AEE205-ROBOTICS	L	т	Ρ	С
		3	0	0	3

	Course Objectives
1.	To understand robot locomotion and mobile robot kinematics.
2.	To understand perception in robotics.
3.	To study mobile robot localization
4.	To learn the mobile robot mapping.
5.	To study robot planning and navigation

UNIT - ILOCOMOTION AND KINEMATICS9Introduction to Robotics-key issues in robot locomotion-legged robots-wheeled mobile robots -
aerial mobile robots - introduction to kinematics - kinematics models and constraints-robot
maneuverability9

UNIT-II	ROBOT PERCEPTION	9
Sensors for	mobile robots-vision for robotics-cameras-image formation-structure	from

stereo-structure from motion-optical flow-color tracking-place recognition-range data.

UNIT-III	MOBILE ROBOT LOCALIZATION	9

Introduction to localization–challenges in localization–localization and navigation–belief representation – map representation – probabilistic map-based localization – Markov localization – EKF localization — UKF localization — Grid localization — Monte Carlolocalization–localization in dynamic environments.

UNIT-IV

MOBILE ROBOT MAPPING

9

Autonomous map building–occupancy grip mapping–MAP occupancy mapping–SLAM,–extended Kalman Filter SLAM — graph-based SLAM — particle filter SLAM— sparse extended information filter–fast SLAM algorithm.

UNIT-V	PLANNING AND NAVIGATION	9
	ng and navigation–planning and reacting–path planning–obstacle aven n architectures–basic exploration algorithms.	idance

	Course Outcomes:Students will be able to	
CO1	Explain robot locomotion, kinematics models and constraints.	
CO2	Analyze the vision algorithms for robotics	
CO3	Test robot localization techniques	
CO4	Test robot mapping techniques	
CO5	Analyze the planning and exploration algorithms	

	Reference Books
1.	Gregory Dudek and MichaelJenkin, "Computational Principles of Mobile Robotics", Second Edition, Cambridge University Press, 2010.
2.	Howie Chosetet al., "Principles of Robot Motion: Theory, Algorithms, and Implementations", ABradford Book, 2005
3.	MajaJ. Mataric,"The Robotics Primer", MIT Press, 2007.
4.	RolandSeigwart, IllahReza Nourbakhsh, and Davide Scaramuzza,"Introduction to autonomous mobile robots",Second Edition, MIT Press,2011.
5.	SebastianThrun,WolframBurgard, and DieterFox,"Probabilistic Robotics", MIT Press, 2005.

M 1

M.E	M23AEP201- ELECTRONICS SYSTEM DESIGN LABORATORY-II	L	т	Р	С
	DESIGN LABORATOR T-II	0	0	4	2

	Course Objectives
1.	To study of 32 bit ARM 7 microcontroller RTOS and its application.
2	To understand testing RTOS environment and system programming
3	To learn wireless network design using embedded systems
4	To learn System design using ASIC.
5	To know use of Verilog and VHDL in sequential digital system modeling

	List of Experiments		
Expt.No.	Description of the Experiments (Any 8 experiments)		
1.	Study of 32 bit ARM 7 microcontroller RTOS and its application		
2.	Testing RTOS environment and system programming		
3.	Designing of wireless network using embedded systems		
4.	Implementation of ARM with FPGA		
5.	Design and Implementation of ALU in FPGA using VHDL and Verilog		
6.	Modelling of Sequential Digital system using Verilog and VHDL		
7.	Flash controller programming-data flash with erase, verify and fusing		
8.	System design using ASIC		
9.	Design, simulation and analysis of signal integrity		
	Total Instructional hours:60		

Total Instructional hours:60

	Course Outcomes: Students will be able to		
CO1	Utilize ARM with FPGA		
CO2	Demonstrate the designing of ALU in FPGA using VHDL and Verilog		
CO3	Outline about the RTOS.		
CO4	Examine the flash controller programming		
CO5	Explain design, simulation and analysis of signal integrity		

bull

Approved by BoS Chairman

	LIST OF EQUIPMENT FOR A BATCHOF 30 STUDENTS									
SI.No.	Description of the Equipment	Quantity required (Nos.)								
1.	ARM7 Development board with RTOS like Linuxor VX works/ PIC Microcontroller	10								
2.	Vxworks or Equivalent RTOS /8051 Microcontroller	10								
3.	Wireless Modules like Zigbee or equivalent	5								
4.	FPGA Board like Spartan 3 Eorcyclonell	10								
5.	XILNX,Quartus-2	10								
6.	Flash Programming Kit (Universal Programmes) 8255 PPI	5								
7.	Mentor graphics/Cadence	5								
8.	Signal Integrity/TMS320C XXXX DSP based Development trainer	5								

Bull

M F		L	т	Р	С
M.E.	M23CEP203-ARTICLE WRITING AND SEMINAR (Common to VLSI & AE)	0	0	2	1

	Course Objectives
1.	In this course, students will develop their scientific and technical reading and writing skills that
	they need to understand and construct research articles. A term paper requires a student to
	obtain information from a variety of sources (i.e., Journals, dictionaries, reference books) and
	then place it in logically developed ideas. The work involves the following steps:

- 1. Selecting a subject, narrowing the subject into a topic
- 2. Stating an objective.
- 3. Collecting the relevant bibliography(atleast15 journal papers)
- 4. Preparing a working outline.
- 5. Studying the papers and understanding the author's contributions and critically analyzing each paper.
- 6. Preparing a working outline
- 7. Linking the paper sand preparing a draft of the paper.
- 8. Preparing conclusions based on the reading of all the papers.
- 9. Writing the Final Paper and giving final Presentation

un

Activity	Instructions	Submi ssion Week	Evaluation Week
Selection of area of interest and Topic (Stating an Objective)	You are requested to select an area of interest, topic and state an objective	2 nd week	3% Based on clarity of thought, current relevance and clarity in writing
Collecting Information about your area & topic	 List 1 Special Interest Groups or professional society List 2 journals List 2 conferences, symposia or workshops List 1 thesis title List 3 web presences (mailing lists, forums, news sites) List 3 authors who publish regularly in your area Attach a call for Papers (CFP) from your area. 	3 rd week	3% (the selected information must be area specific and of international and national standard)

Bull

		r	1
Collection of Journal papers in the topic in the context of the objective – collect 20 & then filter	You have to provide a complete list of references you will be using- Based on your objective - Search various digital libraries and Google Scholar When picking papers To read-try to: Pick papers that are Related to each other in Some ways and/or that Are in the same field so That you can write a Meaningful survey out of them, Favour papers from well-known journals and conferences, Favour "first" or "foundational" papers in the field (as indicated in other people"s survey paper),Favour more recent papers, Pick a recent survey of the field so you can quickly Gain an overview, Find relationships with respect to each other and to your topic area (classification Scheme / categorization) Mark in the hard copy of papers whether complete work or section/sections of the paper are being considered	4 th week	6% (the list of standard papers and reason for selection)
Reading and notes	Reading Paper Process For each paper form a Table answering the following questions: What is the main topic of the article? What was /were the main issue(s) the author said they want to discuss? Why did the author claim it was important? How does the work build on other's work, in the author's opinion? What simplifying assumptions does the author claim to be making? What did the author do? How did the author claim they were going t o evaluate their work and compare it to	5 th week	8% (the table given should indicate your understanding of the paper and the evaluation is based on your Conclusions about each paper)

Bull

for first 5 papers	others? What did the author say were the limitations of their research? What did the author say were the important directions for future research? Conclude with limitations/issues not addressed by the paper(from the perspective of your survey)		
Reading and notes for next 5 papers	Repeat Reading Paper Process	6 th week	8% (the table given should indicate your understanding of the paper and the evaluation is based on your conclusions about each paper)
Reading and notes for final 5papers	Repeat Reading Paper Process	7 th week	8% (the table given should indicate your understanding of the paper and the evaluation is based on your conclusions about each paper)
Draft outline1 and Linking papers	Prepare a draft Outline, your survey goals, along with a classification /categorization diagram	8 th week	8%(this component will be evaluated based on the linking and Classification among the papers)
Abstract	Prepare a draft abstract and give a presentation	9 th week	6% (Clarity, purpose and conclusion) 6% Presentation &Viva Voce
Introduction Background	Write an introduction and background sections	10 th week	5%(clarity)
Sections of the paper	Write the sections of your paper based on the classification/categorization diagram in keeping with the Goal so of your survey	11 th week	10% (this Component will be evaluated based on the linking and classification Among the papers)
Your conclusions	Write your conclusions and future work	12 th week	5% (conclusions– clarity and your ideas)
Final Draft	Complete the final draft of your paper	13 th week	10% (formatting, English, Clarity and linking) 4% Plagiarism Check

suma

			Report
Seminar	A brief 15 slides on your paper	14 th & 15 th week	10% (based on presentation and Viva-voce)

	Course Outcomes: Students will be able to						
CO1	Survey the relevant information						
CO2	Outline the importance's						
CO3	Formulate the concept						
CO4	Compare the data's with existing						
CO5	Outline about concluding remarks						

Spring

Semester III										
Course Code	Course Name	СТ	Inst	ructi	iona	l Hou	irs Assessment			ent
Course Coue		01	СР	L	Τ	Р	С	CIA	ESE	Total
Theory / Theor	Theory / Theory with Practical									
M23AET301	Advanced Microprocessors and Microcontrollers Architecture	PC	3	3	0	0	3	40	60	100
	Professional Elective–IV	PE	3	3	0	0	3	40	60	100
	Professional Elective–V	PE	3	3	0	0	3	40	60	100
Practical							-	_	-	
M23AEP301	Project Work (Phase I)	PW	12	0	0	12	6	40	60	100
	Total credits to be earned									

Semester IV										
Course Code	Course Name	СТ	Instructional Hou				irs	Assessment		
Course Code			СР	L	Т	P	С	CIA	ESE	Total
Practical	Practical									
M23AEP401	Project Work (Phase II)	PW	24	0	0	24	12	40	60	100
	Total credits to be earned					12				

aprilla

Approved By BoS Chairman

PROFESSIONAL ELECTIVES(PE)										
Semester– III										
	Elective – IV									
Course Code	Course Name	СТ]	[nstruct	ional l	Hours		A	ssessm	ent
Course Code		01	СР	L	Τ	P	С	CIA	ESE	Total
Theory / Theory	Theory / Theory with Practical									
M23AEE301	DSP Processor Architecture and Programming	PE	3	3	0	0	3	40	60	100
M23AEE302	Wavelets and Multi resolution Processing	PE	3	3	0	0	3	40	60	100
M23VDE204	System on Chip Design	PE	3	3	0	0	3	40	60	100
M23VDE305	MEMS and NEMS	PE	3	3	0	0	3	40	60	100

	PROFESSIONAL ELECTIVES(PE)									
Semester-III										
		Elective	–V							
Course Code	Course Name	СТ		Instruct	ional l	Hours		Assessment		
Course Code			СР	L	Т	P	C	CIA	ESE	Total
Theory / Theor	Theory / Theory with Practical									
M23VDE306	Machine Learning and Algorithm design	PE	3	3	0	0	3	40	60	100
M23AEE303	Advanced Digital Image Processing	PE	3	3	0	0	3	40	60	100
M23AEE304	Pattern Recognition	PE	3	3	0	0	3	40	60	100
M23AEE305	Secure Computing Systems	PE	3	3	0	0	3	40	60	100

aprillion

Semester-III

		M19AET301 - ADVANCED MICROPROCESSORS	L	Т	Р	С
B.E		AND MICROCONTROLLERS ARCHITECTURE	3	0	0	3
		Course Objectives				
1.	To study 8	80486 and Pentium processor.				
2.	To unders	tand CISC and RISC Architectures.				
3.	To learn A	ARM processor and instruction set.				
4.	To introdu	ace the basic features in Motorola microcontrollers				
5.	To study a	about PIC microcontroller.				
UNI	T-I	80486 AND PENTIUM PROCESSOR				9
80486 1	PROCES	SOR : Basic programming model – Memory organization –	Data ty	vpes – I	nstructi	on set -
Addres	sing mod	e – Address translation – Interrupts – PENTIUM PROCES	SOR In	troduct	ion to F	Pentium
process	or archite	ecture - Special Pentium Registers - Pentium Memory M	anagem	ent – I	ntroduc	tion to
Pentiun	n pro proc	cessor – Pentium Pro Special Features.				
UNIT- IICISC AND RISC ARCHITECTURE9						9
Introdu	ction to 1	RISC architectures: RISC Versus CISC – RISC Case stud	lies: M	IPS R4	000-SP	ARC –
Intel i8	60 - IBM	RS/6000.				
UNI	Г- Ш	ARM PROCESSOR				9
Organization of CPU – Bus architecture – Memory management unit - ARM instruction set - Thumb						ıb
Instruct process		ddressing modes – Programming the ARM processor – Intro	oduction	n to AR	M Cort	ex
UNI		MSP430 16 - BIT MICROCONTRO	LLER			9
The M	SP430 A	rchitecture- CPU Registers - Instruction Set, On-Chip Per	ripheral	s - MS	P430 -	
Develo	pment 7	Fools, ADC - PWM - UART - Timer Interrupts	s - S	ystem	design	using
MSP43	0Microco	ontroller.				
UNI	T- V	PIC MICROCONTROLLER AND MOTOROL MICROCONTROLLER	A 68H(C11		9
Instruct	tion set, a	ddressing modes – operating modes- Interrupt system- RTC	-Serial	Commı	inicatio	n
Interfac	ce – A/D	Converter PWM and UART. MOTOROLA: CPU Archite	tecture -	– Instru	iction s	set –
interrup	ots-Timer	s- I2C Interfacing –UART- A/D Converter – PWM, Case St	udy.			
		Т	Total In	struction	onal ho	ours: 45

	Reference Books
	Andrew Sloss, "ARM System Developers Guide", Morgan Kaufmann Publishers, 2005.
1.	approach", Morgan Kaufmann / Elsevier, 1997.
	Barry B Brey, "The Intel Microprocessor, Pentium and Pentium Pro Processor, Architecture
2.	Programming and Interfacing", Prentice Hall of India, 2002.
3.	Daniel Tabak, "Advanced Microprocessors", McGraw Hill Inc., 1995.
4.	David E Simon "An Embedded Software Primer", Pearson Education, 2007.
5.	Gene .H.Miller, "Micro Computer Engineering", Pearson Education, 2003.
6.	Intel, "Microprocessors", Vol-I & Vol-II, Intel Corporation, USA, 1992.
7.	John B. Peatman, "Design with PIC Microcontroller", Prentice hall, 1997.
Mohammed Rafiquzzaman, "Microprocessors and Microcomputer Based System Design",	
8.	Universal Book Stall, New Delhi, 1990.
9.	John H.Davis, "MSP 430 Microcontroller basics" Elsevier, 2008.
10.	Steve Furber, "ARM System-on-Chip Architecture", Pearson Education, 2005.
11.	"ARM7 TDMI Technical Reference Manual", ARM Ltd., UK, 2004.

	Course Outcomes: Students will be able to					
CO1	Outline the basics of 80486 processor.					
CO2	Explain the functionalities of CISC and RISC architecture.					
CO3	Analyze the functionalities of ARM processor.					
CO4	Outline the basic features in Motorola microcontrollers.					
CO5	Explain PIC microcontroller and Motorola 68HC11 microcontroller.					

aprilla
Approved By BoS Chairman

PROFESSIONAL ELECTIVE–IV

M23AEE301 - DSP PROCESSOR	L	Т	Р	C	
B. E	ARCHITECTURE AND PROGRAMMING	3	0	0	3
	Course Objectives				
1. To stud	y Digital Signal Processor basics.				
2. To lear	n TMS320C5X processor.				
3. To lear	n TMS320C6X processor.				
4. To stud	y about ADSP Processors.				
5. To stud	y about applications of DSP Processors.				
UNIT- I	FUNDAMENTALS OF PROGRAMMABLE	E DSPs			9
Multiplier ar	d Multiplier accumulator – Modified Bus Structures and M	Memory	y access	s in PD	OSPs –
Multiple ac	cess memory – Multi-port memory – VLIW architect	ure- Pi	ipelinin	g – S	pecial
Addressing 1	nodes in P-DSPs – On chip Peripherals.				
UNIT- II	TMS320C5X PROCESSOR				9
Architecture	– Assembly language syntax - Addressing modes – Assem	bly lang	guage I	nstruct	tions -
Pipeline stru	cture, Operation - Block Diagram of DSP starter kit -	Applic	ation P	rogran	ns for
processing r	eal time signals.				
UNIT- III	TMS320C6X PROCESSOR				9
Architecture of	of the C6x Processor - Instruction Set - DSP Developme	ent Syst	tem: In	troduct	tion –
DSP Starter K	it Support Tools- Code Composer Studio - Support Files -	Program	mming	Examp	ples to
Test the DSK '	Fools – Application Programs for processing realtime signal	s.			
UNIT- IV	ADSP PROCESSORS				9
Architecture of	f ADSP-21XX and ADSP-210XX series of DSP process	ors- Ac	ldressir	ng mod	les and
assembly lang	uage instructions – Application programs –Filter design, F	FFT cal	culation	1.	
UNIT- V APPLICATIONS OF DSP PROCESSORS			9		
Voice scrambl	ing using filtering and modulation, Voice detection and reve	erse pla	yback,	Audio	effects,
Graphic equali	zer, Adaptive noise cancellation, DTMF signal detection, Aut		-	-	
	7	Fotal In	structio	onal ho	ours: 45

(Hot

Approved By BoS Chairman

	Text Books
1.	Avtar Singh and S. Srinivasan, "Digital Signal Processing – Implementations using DSF Microprocessors with Examples from TMS320C54xx", Cengage Learning India Private Limited Delhi 2012.
	RulphChassaing, "Digital Signal Processing and Applications with the C6713 and C6416 DSK" A JOHN WILEY & SONS, INC., PUBLICATION, 2005.

	Reference Books
	B.Venkataramani and M.Bhaskar, "Digital Signal Processors – Architecture, Programming and
1	Applications", Tata McGraw – Hill Publishing Company Limited, New Delhi, 2003.
2.	TMS320C5416/6713 DSK user manual at https://www.ti.com

	Course Outcomes: Students will be able to			
C01	Outline the basics of Digital Signal Processor			
CO2	Examine the Architecture of TMS320C5X Processor			
CO3	Examine the Architecture of TMS320C6X Processor			
CO4	Outline about the ADSP Processors.			
CO5	Study the applications of DSP Processors.			

aprillion	
Approved By BoS Chairman	

		E M23AEE302 - WAVELETS AND MULTIRESOLUTION PROCESSING	L	Т	Р	С
	B.E		3	0	0	3
	Course Objectives					
1.	1.To study about the basics of wavelet transform.					
2.	2. To learn continuous wavelet transforms.					
3.	3. To learn Multi Resolution Analysis.					
4.	4. To study about discrete wavelet transform.					
5.	5. To study about applications of wavelet transform.					
UNIT- IINTRODUCTION9		9				

Vector Spaces - properties - dot product - basis – dimension, orthogonality and orthonormality - relationship between vectors and signals - Signal spaces – concept of Convergence - Hilbert spaces for energy signals - Short Time Fourier Transform.

UNIT-II

CONTINUOUS WAVELET TRANSFORM

Wavelet Transform - definition and properties - concept of scale and its relation with frequency -Continuous Wavelet Transform (CWT) - Scaling function and wavelet functions (Daubechies, Coiflet, Mexican Hat, Sinc, Gaussian, Bi-Orthogonal) – Tiling of time -scale plane for CWT.

UNIT- III

MULTI RESOLUTION ANALYSIS

Definition of Multi Resolution Analysis (MRA) – Haar basis - Construction of general orthonormal MRA-Wavelet basis for MRA – Continuous time MRA interpretation for the DTWT – Discrete time MRA- Basis functions for the DTWT – PRQMF filter banks.

UNIT-IV

DISCRETE WAVELET TRANSFORM

Filter Bank and sub band coding principles - Wavelet Filters - Inverse DWT computation by Filter banks -Basic Properties of Filter coefficients - Choice of wavelet function coefficients - Mallat's algorithm for DWT - Lifting Scheme: Wavelet Transform using Polyphase matrix Factorization – Geometrical foundations of lifting scheme - Lifting scheme in Z –domain.

UNIT- V

APPLICATIONS

9

9

9

9

Signal Compression-Image Compression using DWT – Sequential / Progressive - JPEG 2000 standard -Image denoising - Edge detection and object Isolation and Object Detection - Image Fusion - Haar wavelet packets, Introduction to second generation wavelets.

Total Instructional hours: 45

	Reference Books
1	Sidney Burvus C, Ramesh A.Gopinath haito, "Introduction to wavelets and wavelet Transform",
1.	Prentice Hall International, 1995.
2.	Gilbert Strang, "Linear Algebra and its Applications", 3 rd Edition.
3.	Goswami J.C, Chan A.K, "Fundamentels of wavelets", John wiley and sons, 1999.
4.	Strang G, Nguyen T, "Wavelets and Filter Banks", Wellesley Cambridge Press, 1996.
5.	Vetterli M, Kovacevic J, "Wavelets and Sub-band Coding", Prentice Hall, 1995.
6.	Mallat S, "Wavelet Signal Processing", Academic Press, 1996.

	Course Outcomes: Students will be able to		
C01	Illustrate the fundamentals of vectors, signals, Hilbert and Fourier signal spaces.		
CO2	Apply continuous wavelet transform for image processing.		
CO3	Analyze signals using Multi Resolution Analysis.		
CO4	Apply discrete wavelet transform for image processing.		
CO5	Assess the different family of wavelets for real-time applications.		

Approved By BoS Chairman

M.E.	M23VDE204-SYSTEM ON CHIP DESIGN	L	Т	Р	C	
	(Common to VLSI & AE)	3	0	0	3	

	Course Objectives	
1.	To introduce SoC concepts.	
2.	To study the system level modelling.	
3.	To learn the hardware/software co-design principles.	
4.	To familiar with system synthesis.	
5.	To learn the hardware/software co-verification principles.	

UNIT-I

INTRODUCTION

Introduction to SoC Design, system level design, methodologies and tools, system hardware: IO, communication, processing units, memories; operating systems: prediction of execution, real time scheduling, embedded OS, middle ware; Platform based SoC design, multiprocessor SoC and Network on Chip, Low power SoC Design.

UNIT-II

SYSTEM LEVEL MODELLING

SystemC: overview, Data types, modules, notion of time, dynamic process, basic channels, structure communication, ports and interfaces, Design with examples.

UNIT-III

HARDWARE SOFTWARE CO-DESIGN

Analysis, partitioning, high level optimisations, real-time scheduling, hardware acceleration, voltage scaling and power management; Virtual platform models, co-simulation and FPGAs for prototyping of HW/SW systems.

UNIT-IV

SYNTHESIS

System synthesis: Transaction Level Modelling (TLM) based design, automaticTLM generation and mapping, platform synthesis; software synthesis: code generation, multi task synthesis, internal and external communication; Hardware synthesis: RTL architecture, Input models, estimation and optimisation, resource sharing and pipelining and scheduling.

Approved By Bo	S Chairman

9 σ a

9

9

9

UNIT-V

SOC VERIFICATION AND TESTING

SoC and IP integration, Verification: Verification technology options, verification methodology, overview: system level verification, physical verification, hardware/software co-verification; Test requirements and methodologies, SoC design for testability - System modelling, test power dissipation, test access mechanism, Case Study.

Total Instructional hours:45

	Course Outcomes: Students will be able to		
CO1	Outline the basics of SoC design		
CO2	Explain the modelling process		
CO3	Analyse and design the software hardware models		
CO4	Explain the synthesis process		
CO5	:Design the test mechanism for SoC test and verification		

	Text Books
1.	D.Black, J.Donovan, "System C:From the Ground Up", Springer, 2004.
2.	D.Gajski,S.Abdi,A.Gerstlauer,G.Schirner, "Embedded System Design: Modeling, Synthesis, Verification", Springer,2009.

	Reference Books
1.	C.SivaRam Murthy and B.S.Manoj, "AdHoc Wireless Networks-Architectures and Protocols",
	Pearson Education,2004.
2.	ErikLarson,"Introduction to advanced system-on-chip test design and optimization",Springer,2005.

Approved By BoS Chairman

9

		L	Т	Р	C
B.E	M23VDE305 - MEMS AND NEMS	3	0	0	3
Course Objectives					
1. To introd	luce the concepts of micro-electromechanical devices.				
2. To know	the fabrication process of Microsystems.				
3. To know	the design concepts of micro sensors.				
	the design concepts of micro actuators.				
5. To famil	arize concepts of quantum mechanics and nano systems.				
UNIT- I	INTRODUCTION AND FABRICATION OF	MEMS	5		9
MEMS and Mic	rosystems, Miniaturization, Typical products, Micro sensor	rs, Mic	ro actua	ation, N	/IEMS
with micro actu	ators, Micro-accelerometers and Micro fluidics, Materials	for ME	EMS: Si	licon, s	silicon
compounds, pol	ymers, metals. Photolithography, Ion Implantation, Diffusion	on, Oxi	dation,	Dry an	d wet
etching, Bulk M	icromachining, Surface Micromachining, LIGA.				
UNIT- II	INTRODUCTION AND FABRICATION OF	NEMS	5		9
Introduction to 1	NEMS, Nano scaling, classification of nano structured mater	rials, A	pplicati	ons of	
	ynthesis routes – Bottom up and Top down approaches. At				
	nics, Molecular and Nanostructure Dynamics: Schrodinger I				
UNIT- III	DESIGN OF MEMS SENSORS AND ACTUA	TORS			9
Acoustic sensor	- Quartz crystal microbalance, Surface acoustic wave,	Flexu	ral plat	e wave	e, shear
horizontal; Vib	ratory gyroscope, Pressure sensors, Electrostatic actuate	ors, pi	ezoelect	tric ac	tuators,
Thermal actuate	rs, Actuators using shape memory alloys, Microgrippers,	Micro	motors,	Micro	valves,
Micropumps.					
UNIT- IV	RF AND BIO MEMS				9
Introduction to F	RF MEMS technologies: Need for RF MEMS components in	comm	unicatio	ons, spa	ce and
defense applicat	ons, Materials and fabrication technologies, Special conside	erations	in RF	MEMS	design.
Case studies: Micro-switches BioMEMS- Drug delivery, Electronic nose, Bio chip.					
UNIT- V	UNIT- VNANOSYSTEMS AND QUANTUM MECHANICS9			9	
Atomic Structur	es and Quantum Mechanics, Molecular and Nanostructure	Dynam	ics: Sch	roding	er
Equation and V	Vave function Theory, Density Functional Theory, Nand	ostructu	ires and	l Molec	cular
Dynamics, Electromagnetic Fields and their quantization, Molecular Wires and Molecular Circuits.					
	Total Instructional hours: 45				
	aprillion				

	Reference Books
1.	Ran Hsu, MEMS and Microsystems Design and Manufacture, Tata McGraw Hill, 2002.
	Murty B.S, Shankar P, Raj B, Rath, B.B, Murday J, Textbook of Nanoscience and Nanotechnology, Springer publishing, 2013
3.	Sergey Edward Lyshevski, "MEMS and NEMS: Systems, Devices, and Structures", CRC Press, 2002
4.	Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006.
5.	Vinod Kumar Khanna Nanosensors: Physical, Chemical, and Biological, CRC press,2012.
6.	Mahalik N P, MEMS, Tata McGraw Hill, 2007.
7.	Manouchehr E Motamedi, MOEMS: Micro-Opto-Electro-Mechanical Systems, SPIE press, First Edition, 2005.

	Course Outcomes: Students will be able to		
CO1	Outline the concepts of micro-electromechanical devices		
CO2	Explain the fabrication process of Microsystems		
CO3	Design the concepts of micro sensors		
CO4	Design the concepts of micro actuators		
CO5	Explain concepts of quantum mechanics and nano systems		

aprilla

Approved By BoS Chairman

PROFESSIONAL ELECTIVE-V

	M23VDE306 – MACHINE LEARNING AND	L	Т	Р	С
B.E	ALGORITHM DESIGN	3	0	0	3
	Course Objectives	1	1	<u></u>	
	rstand the concepts and mathematical foundations of mast tackled by machine learning	chine 1	earning	and ty	pes of
-	re the different supervised learning techniques including ens			8	
	different aspects of unsupervised learning and reinforcemen	t learnii	ng		
	are the k means and hierarchal clustering technique the selection of algorithm for specific applications.				
UNIT- I	INTRODUCTION AND MATHEMATIC FOUNDATIONS	CAL			9
What is Machin	e Learning? Need –History – Definitions – Applications - A	Advanta	iges, Di	sadvant	tages &
Challenges -Ty	bes of Machine Learning Problems – Mathematical Four	ndations	s - Line	ear Alg	ebra &
Analytical Geor	netry -Probability and Statistics- Bayesian Conditional Pro	obability	v -Vect	or Calc	ulus &
	Decision Theory - Information theory				
UNIT- II	SUPERVISED LEARNING				9
Introduction-Dis	criminative and Generative Models -Linear Regression - I	Least So	juares -	Under-	fitting
Overfitting -Cro	ss-Validation – Lasso Regression- Classification - Logistic	Regree	ssion- C	adient	Linea
Models -Suppor	t Vector Machines –Kernel Methods -Instance based Meth	nods - H	K-Neare	st Neig	hbors ·
	nods –Decision Trees –ID3 – CART - Ensemble Methods -			-	
of Classification	Algorithms				
UNIT- III	UNSUPERVISED LEARNING AND REINFOR LEARNING	CEME	NT		9
Introduction -	Clustering Algorithms -K – Means – Hierarchical Clus	stering	- Clus	ter Val	lidity -
Dimensionality	Reduction – Principal Component Analysis – Recommendat	tion Sys	tems -	EM alg	orithm.
Reinforcement I	Learning – Elements -Model based Learning – Temporal Dif	ference	Learni	ng IC.	
UNIT- IV	MAIN ALGORITHMS USED IN	ML			9
e	on, Decision Trees, K-nearest Neighbour, Collaborative F	Filtering	, Dime	nsionali	ity
Reduction Tech	nique, Logistic Regression, Support Vector Machine.				
UNIT- V	NAIVES BAYES				9
Conditional Pro	bability and Its Intuition, Bayes' Theorem, Naive Bayes -W	Vith On	e Featu	re, Con	ditiona
-	n Naive Bayes, Deciphering Naive Bayes, Introductio			•	
Classification, L Laplace Smooth	Occument Classifier - Pre Processing Steps, Document Clas	sifier -	worked	i out Ex	ample,
		Fotal In	structi	onal ho	urs: 45
	Spring				

Approved By BoS Chairman

	Text Books
1.	APPLIED MACHINE LEARNING by M. GOPAL, MC GRAW HILL
	Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, Mathematics for Machine Learning,
2.	Cambridge University Press (23 April 2020)
3.	Tom M. Mitchell- Machine Learning - McGraw Hill Education, International Edition

	Reference Books
	Introduction To Machine Learning With Python by Andreas C. Müller, SARAH GUIDO,
1.	O Reilly Publishing.
2.	Trevor Hastie, Robert Tibshirani, and Jerome Friedman - The Elements of Statistical Learning: Data Mining, Inference, and Prediction - Springer, 2nd edition.

	Course Outcomes: Students will be able to
CO1	Understand the fundamental concepts and mathematical foundations of machine learning and types of problems tackled by ML techniques
CO2	Applying different supervised learning techniques like Regression, Classification and SVM including ensemble methods
	Analyzing different unsupervised learning techniques and reinforcement learning.
CO4	Appreciate the mathematical background behind popular ML algorithms.
	Ensure awareness about importance of conditional algorithms, Classifier and Naive Bayes concepts in ML

Denne

Approved By BoS Chairman

	M23AEE303 – ADVANCED DIGITAL	L	Т	Р	C	
B.E	IMAGE PROCESSING	3	0	0	3	
Course Objectives						
1. To unde	rstand the fundamentals of digital image processing.					
	concept of color image processing technique.					
	morphological image processing algorithms. segmentation algorithms and descriptors for image processing	nσ				
	object recognition and image processing applications.	iig.				
UNIT- I	FUNDAMENTALS OF DIGITAL IMAG PROCESSING	GE			9	
Elements of Vi	sual Perception- Image acquisition, digitization- Histogra	ım - Im	age enl	hancen	ient –	
Spatial filters for	or smoothing and sharpening – Discrete 2D transforms -	DFT, D	CT, W	alsh-		
Hadamard, Slaı	nt, KL, Wavelet Transform – Haar wavelet.					
UNIT- II	COLOR IMAGE PROCESSSING				9	
Color Image Fu	indamentals-Color Models- RGB, CMY, CMYK and HSI	Color N	Models-	· Pseud	ocolor	
	ng - Intensity Slicing- Intensity to Color transformation					
•	lor Transformation - Color Image Smoothing and Sharpen				•	
-		ing- cc		Smenta	.1011 -	
Noise in Color I	<u> </u>					
UNIT- III	UNIT- III MORPHOLOGICAL IMAGE PROCESSING 9					
Preliminaries- H	Basic Concepts from Set Theory-Logic Operations Involvir	ng Bina	ry Imag	ges - D	ilation	
and Erosion –O	pening and Closing - Hit-or-Miss Transformation - Basic	Morpho	logical	Algori	thms -	
Boundary Extra	ction- Region Filling- Extraction of Connected Component	ts- Con	vex Hu	ll- Thii	nning-	
Thickening- Ske	eletons- Pruning Gray-Scale Morphology, Case Study					
UNIT- IV	SEGMENTATION, REPRESENTATION AND I	DESCR	IPTIO	N	9	
Edge Detection	- Edge Linking and Boundary Detection -Thresholding- Seg	gmentat	ion by	Morpho	ological	
Watershed Segr	nentation Algorithm - Use of Markers- Representation and	Bound	ary De	scriptor	s, Case	
Study.						
UNIT- V	3D IMAGE VISUALIZATION				9	
Sources of 3D	Data sets, Slicing the Data set, Arbitrary section planes, T	The use	of cold	or, Volu	umetric	
display, Stereo	Viewing, Ray tracing, Reflection, Surfaces, multiply	connec	ted su	rfaces,	Image	
processing in 3I	D, Measurements on 3D images.					
	ſ	Fotal In	structi	onal ho	ours: 45	
	Springe					

Approved By BoS Chairman

	Reference Books	
1	Rafael C. Gonzalez, "Digital Image Processing", Pearson Education, Inc., 3rd Edition,	
1.	2008.	
	Milman Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis and Machine	
2.	Vision", Brooks/Cloe, Vikas Publishing House 2 nd Edition, 1999.	
	Khalid Sayood, "Data Compression", Morgan Kaufmann Publishers (Elsevier)., 3rd	
3.	Edition, 2006.	
	Rafael C. Gonzalez, Richards E.Woods, Steven Eddins, "Digital Image Processing	
4.	using MATLAB", Pearson Education, Inc., 2004.	
5.	5. Willam K.Pratt, "Digital Image Processing", John Wiley, New York, 2002.	
	Rick S.Blum, Zheng Liu," Multisensor image fusion and its Applications", Taylor & Francis,	
6.	2006.	

	Course Outcomes: Students will be able to		
C01	Explain about image acquisition, digitization and spatial filters for enhancement		
CO2	Outline color image processing techniques		
CO3	Apply morphological image processing algorithms		
CO4	Apply segmentation algorithms and descriptors for image processing		
	Examine neural networks, fuzzy logic, genetic algorithms in object recognition, compression, watermarking and steganography algorithms to images		

L

Springe

Approved By BoS Chairman

			L	Т	Р	С
B.E		M23AEE304 - PATTERN RECOGNITION	3	0	0	3
	Course Objectives					
1.	To learn	n about supervised pattern classifiers.				
2.	2. To learn about unsupervised pattern classifiers.					
3.	To fami	liarize about different feature extraction techniques.				
4.	To expl	ore the role of Hidden Marko model and SVM in pattern reco	ognitior	1.		
5.	To stud	y the application of Fuzzy logic and Neural Network for patte	ern clas	sifier.		
UNI	T- I	PATTERN CLASSIFIER				9
	ximum L	attern recognition – Discriminant functions – Supervised lear Aikelihood Estimation – Bayes Theorem – Bayesian Belief	-			
UNI	T- II	CLUSTERING				9
	s algorith	unsupervised learning and classification–Clustering conce m –Hierarchical clustering – Graph theoretic approach to p				-
UNI	Г- III	FEATURE EXTRACTION AND STRUCTU PATTERN RECOGNITION	JRAL			9
Princip	le compo	onent analysis, Independent component analysis, Linear dis	scrimin	ant ana	lysis, F	eature
selectio	on throug	h functional approximation – Elements of formal gramm	ars, Sy	ntactic	descrip	tion –
Stochas	stic gram	mars – Structural Representation, Case Study.				
UNI	Г- IV	HIDDEN MARKOV MODELS AND SUPPORT MACHINE	VECT(OR		9
State M	lachines -	- Hidden Markov Models – Training – Classification – Supp	oort vec	tor Mac	chine –	Feature
Selectio	on, SVM	Applications.				
UNI	T- V	RECENT ADVANCES				9
Fuzzy S	Set Theor	y, Fuzzy and Crisp Classification, Fuzzy Clustering, – Fuzz	y Patter	n Class	ifiers –	Pattern
Classifi	cation us	sing Genetic Algorithms - Case Study Using Fuzzy Pattern	n Classi	fiers a	nd Perc	eption-
Elemen	Elementary Neural Network for Pattern Recognition-ADALINE.					
		Ĩ	fotal In	structi	onal ho	ours: 45
		Sprung				

Approved By BoS Chairman

	Reference Books
1.	Andrew Webb, "Stastical Pattern Recognition", Arnold publishers, London, 1999.
2.	C.M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
3.	M. Narasimha Murthy and V. Susheela Devi, "Pattern Recognition", Springer, 2011.
4.	Menahem Friedman and Abraham Kandel, "Introduction to Pattern Recognition Statistical,
	Structural, Neural and Fuzzy Logic Approaches", World Scientific publishing Co. Ltd, 2000.
5	Robert J.Schalkoff, "Pattern Recognition Statistical, Structural and Neural Approaches", John
5.	Wiley & Sons Inc., New York, 1992.
5.	R.O. Duda, P.E.Hart and D.G.Stork, "Pattern Classification", John Wiley, 2001.
7.	S.Theodoridis and K.Koutroumbas, "Pattern Recognition", 4th Ed., Academic Press, 2009.

	Course Outcomes: Students will be able to			
CO1	Outline the concepts of supervised classifiers.			
CO2	Outline the concepts of Clustering.			
CO3	Classify the data and identify the patterns.			
CO4	Make use of feature set and select the features from given data set.			
CO5	Apply fuzzy logic and genetic algorithms for classification problems.			

Springe

Approved By BoS Chairman

	DE	M23AEE305 - S	SECURE COMPUTING SYSTEM	s	L	Т	Р	С
	B.E				3	0	0	3
			Course Objectives					
1.	To learn	about computer sec	urity and management.					
2.	To learn	the hardware securi	ty.					
3.	To study	about the security i	n OS and its assembly.					
4.	To study	advanced computer	r architecture.					
5.	To learn	security issues in va	arious types of computing networks.					
UNI	T- I	COMPU	UTER SECURITY AND MANAG	EMEN	Т			9
Overvie	ew of Co	mputer Security, Th	reats, Malware, Vulnerabilities, Aut	henticat	tion,	Access	s Contro	ol,
Securit	y Manag	ement Models, Secu	urity Management Practices, Protecti	on Mec	hani	isms, Lo	egal asp	pects of
security	y, Ethical	Hacking.						
UNI	T- II		HARDWARE SECURITY					9
Need for	or Hardw	vare Security, Comp	uter Memory and storage, Bus and I	ntercor	nnec	tion, I/C) and N	Jetwork
Interfac	ce, CPU	; Side channel A	analysis: Power Analysis Attack,	Timir	ng /	Attack,	Fault	attack.
Counte	rmeasure	es of Side Channel	Attack, Secure Hardware Intellectual	Prope	rties	, Physic	cally	
Unclon	able Fun	ctions(PUFs), Secur	e PUF.					
UNI	T- III	ASSEMB	LY AND OPERATING SYSTEMS	S SECU	J RI T	ſΥ		9
Opcode	e, Operar	nds, Addressing Mo	des, Stack and Buffer Overflow, FII	FO and	M/I	M/1 Pro	blem,	Kernel,
Drivers	and OS	Security; Secure D	besign Principles, Trusted Operating	System	ns, T	Frusted	System	1
Functio	ons.							
UNI	Г- IV	ADVANCE	D COMPUTER ARCHITECTUR	E				9
Securit	y aspects	: Multiprocessors, p	arallel processing, Ubiquitous comp	uting, C	Grid,	Distrib	uted an	d cloud
comput	ting, Inter	rnet computing, Vir	tualization.					
UNI	T-V		SECURITY					9
Design	Principle	es for Secure System	n, Virtualization and Security ,Distrib	outed S	ystei	ms Secu	urity – I	Basics,
Databa	se Securi	ty – Basics, Inference	ce Attacks & Data Privacy , Database	e Secur	ity –	Multi-	Level S	Secure
Databa	ses.							
				Tota	al In	structi	onal ho	ours: 45
]	soulla					
		ļ						
			Approved By BoS Chairman					

Approved By BoS Chairman

	Reference Books
1.	Charles B. Pfleeger, Shari Lawrence Pfleeger, "Security in Computing", Fourth Edition, Pearson
	Education, 2007.
	Debdeep Mukhopadhyay, Rajat Subhra Chakraborty, "Hardware Security - Design Threats and
2.	Safeguards", CRC Press, 2015.
	Michael Whitman, Herbert J. Mattord, "Management of Information Security", Third Edition,
3.	Course Technology, 2010.
4.	Shuangbao Wang, Robert S.Ledley, "Computer Architecture and Security", Wiley, 2013.
_	William Stallings, "Network Security Essentials, Applications and Standards", Dorling
5.	Kindersley I P Ltd, Delhi, 2008

	Course Outcomes: Students will be able to		
	Outline the concepts of security management.		
CO2	Explain about the hardware security.		
	Outline the operating system functions.		
	Explain the various processing and computing methods.		
CO5	Classify the various security issues.		

aprillip

Ī	МЕ		L	Т	Р	С
	M.E.	M23AEP301 - PROJECT WORK (PHASE I)	0	0	12	6

Course Objectives:

- 1. To enable a student to do an individual project work this may involve design, modelling, simulation and/or fabrication.
- 2. To analyse a problem both theoretically and practically.
- 3. To motivate the students to involve in research activities leading to innovative solutions for industrial and societal problems.

COURSE DESCRIPTION:

Project work shall be carried out by each and every individual student under the supervision of a faculty of this department. A student may however, in certain cases, be permitted to work for the project in association with other departments or in an Industrial/Research Organization, on the recommendation of the Head of the Department. In such cases, the project work shall be jointly supervised by a faculty of the Department and an Engineer / Scientist from the organization. The student shall meet the supervisor periodically and attend the periodic reviews for evaluating the progress.

Project work will be carried out in two phases, Phase-I during the third semester and Phase-II during the final semester. Phase-I shall be pursued for a minimum of 12 periods per week and Phase — II in 24 periods per week. In each phase, there will be three reviews for continuous internal assessment and one final review and viva voce at the end of the semesters. The Project Report prepared according to approved guidelines and duly signed by the supervisor(s) and the Head of the Department shall be submitted to the concerned department.

Course Outcomes: Students will be able to

CO1: Identify the area, narrow dine the problem and understand the problem thoroughly

and provide an appropriate solution.

- **CO2:** Show the systematic literature survey which helps to build the knowledge in the chosen field by using the existing journal references
- **CO3:** Construct a mathematical model for the system under study.

CO4: Choose and get proficiency over the software for simulation and analysis.

CO5: Utilize the findings of the phase I work in conferences/journals.

aprilla
Approved By BoS Chairman

Semester-IV

МЕ		L	Т	Р	С
M.E.	M23AEP401 - PROJECT WORK (PHASE II)	0	0	24	12

Course Objectives:

- 1. To enable a student to do an individual project work this may involve design, modelling, simulation and/or fabrication.
- 2. To analyse a problem both theoretically and practically.
- 3. To motivate the students to involve in research activities leading to innovative solutions for industrial and societal problems.

COURSE DESCRIPTION:

Project work shall be carried out by each and every individual student under the supervision of a faculty of this department. A student may however, in certain cases, be permitted to work for the project in association with other departments or in an Industrial/Research Organization, on the recommendation of the Head of the Department. In such cases, the project work shall be jointly supervised by a faculty of the Department and an Engineer / Scientist from the organization. The student shall meet the supervisor periodically and attend the periodic reviews for evaluating the progress.

Project work will be carried out in two phases, Phase-I during the third semester and Phase-II during the final semester. Phase-I shall be pursued for a minimum of 12 periods per week and Phase — II in 24 periods per week. In each phase, there will be three reviews for continuous internal assessment and one final review and viva voce at the end of the semesters. The Project Report prepared according to approved guidelines and duly signed by the supervisor(s) and the Head of the Department shall be submitted to the concerned department.

Course Outcomes: Students will be able to

CO1: Identify the area, narrow dine the problem and understand the problem thoroughly

and provide an appropriate solution.

- **CO2:** Show the systematic literature survey which helps to build the knowledge in the chosen field by using the existing journal references
- **CO3:** Construct a mathematical model for the system under study.
- **CO4:** Choose and get proficiency over the software for simulation and analysis.
- CO5: Utilize the findings of the phase I work in conferences/journals.

Sprung

Approved By BoS Chairman